线控技术认知
线控技术(X by Wire),是将驾驶员的操作动作经过传感器转变成电信号来实现传递控制,替代传统机械系统或者液压系统,并由电信号直接控制执行机构以实现控制目的,基本原理如图5-1所示。
该技术源于美国国家航空航天局(National Aeronautics and Space Administration,NASA)1972年推出的线控飞行技术(Fly by Wire)的飞机。其中,“X”就像数学方程中的未知数,代表汽车中传统上由机械或液压控制的各个部件及相关的操作。
图1 线控技术的基本原理图
由于线控系统取消了传统的气动、液压及机械连接,取而代之的是传感器、控制单元及电磁执行机构,所以具有安全、响应快、维护费用低、安装测试简单快捷的优点。智能网联线控
技术主要包括线控转向技术、线控制动技术、线控驱动技术、线控换挡技术和线控悬架技术等。
1、线控转向系统认知
一、线控转向系统简介
线控转向系统(Steering By Wire,SBW),是智能网联汽车实现路径跟踪与避障避险必要的关键技术,为智能网联汽车实现自主转向提供了良好的硬件基础,其性能直接影响主动安全与驾乘体验。
线控转向系统取消了传统的机械式转向装置,转向盘和转向轮之间无机械连接,可以减轻车体重量,消除路面冲击,具有减小噪声和隔震等优点。
针对线控转向系统的研究,国外起步相对较早。
著名汽车公司和汽车零部件厂家,如美国Delphi公司、天合TRW公司、日本三菱公司、德国博士公司、ZF公司、宝马公司等都相继在研制各自的SBW系统。
TRW公司最早提出用控制信号代替转向盘和转向轮之间的机械连接。但受制于电子控制技术,直到20世纪90年代,线控转向技术才有较大进展。
英菲尼迪的“Q50”成为第1款应用线控转向技术的量产车型。
汽车制动原理2017年,耐世特(Nexteer)公司开发了由“静默转向盘系统”和“随需转向系统”组成的线控转向系统,该系统可随需转向,在自动驾驶时转向盘可以保持静止,并可收缩至组合仪表上,从而提供更大的车内空间。
国内企业对线控汽车的研究起步相对较晚,与国外差距较大,各高校对线控系统的研究主要以理论为主。
2004年,同济大学在上海国际工业博览会上展示了配备线控转向系统的四轮独立驱动微型电动车“春晖三号”,如图1-1所示。
图1-1 线控转向电动车春晖三号
二、线控转向系统结构
线控转向系统,主要由方向盘模块、转向执行模块和ECU三个主要部分以及自动防故障系统、电源系统等辅助模块组成,如图1-2所示。
图1-2 线控转向系统组成结构图
转向盘模块包括转向盘、转向盘转角传感器、扭矩电机。
其主要功能是将驾驶员的转向意图,通过测量转向盘转角转换成数字信号并传递给主控制器;同时接受ECU送来的力矩信号产生转向盘回正力矩,向驾驶员提供相应的路感信号。
转向执行模块包括转角传感器、转向执行电机、转向电机控制器和前轮转向组件等,其主要功能是接受ECU的命令,控制转向电机实现要求的前轮转角,完成驾驶员的转向意图。
ECU对采集的信号进行分析处理,判别汽车的运动状态,向扭矩电机和转向执行电机发送
命令,控制两个电机的工作,其中转向执行电机完成车辆航向角的控制,扭矩电机模拟产生方向盘回正力矩以保障驾驶员驾驶感受。
电源系统,承担控制器、执行电机以及其他车用电机的供电任务,用以保证电网在大负荷下稳定工作。
自动防故障系统,是保证在线控转向系统故障时,提供冗余式安全保障。
它包括一系列监控和实施算法,针对不同的故障形式和等级作出相应处理,以求最大限度地保持汽车的正常行驶。
当检测到ECU、转向执行电机等关键零部件产生故障时,故障处理ECU自动工作,首先发出指令使ECU和转向执行电机完全失效,其次紧急启动故障执行电机以保障车辆航向的安全控制。
(1)英菲尼迪Q50线控转向系统
通过传统的转向管柱将转向盘与转向执行机构连接在一起,基本形态与普通燃油车无异,但在转向管柱与转向执行机构之间由电控多片离合器相连。
如下图1-3所示。
图1-3英菲尼迪Q50线控转向系统
发布评论