辽宁工程技术大学
毕 业 设 计(论 文)
作 者: C G H
专 业: 工 程 力 学
时 间: 二零一七年六月
中文题目:汽车轮胎与地面接触问题的有限元分析
外文题目:FINITE ELEMENT ANAIYSIS OF CONTACT PROBLEM BETWEEN CAR AND GROUND
毕业设计(论文)共81(其中:外文文献及译文26页) 图纸共 0 张
完成日期 2017年6月15日 答辩日期 2016年6月23日
辽宁工程技术大学
本科毕业设计(论文)学生诚信承诺保证书
本人郑重承诺:《汽车轮胎与地面接触问题的有限元分析》毕业设计(论文)的内容真实、可靠,系本人在 指导教师的指导下,独立完成。如果存在弄虚作假、抄袭的情况,本人承担全部责任。
学生签名:
年 月 日
辽宁工程技术大学
本科毕业设计(论文)指导教师诚信承诺保证书
本人郑重承诺:我已按学校相关规定对 同学的毕业设计(论文)的选题与内容进行了指导和审核,确认由该生独立完成。如果存在弄虚作假、抄袭的情况,本人承担指导教师相关责任。
指导教师签名:
年 月 日
摘要
轮胎的接触问题对汽车安全有着至关重要的影响,对汽车轮胎与地面接触问题研究,有助于轮胎设计人员改进轮胎结构和材质,提升汽车安全性能。
本文系统地介绍了轮胎的具体构造、各个部位的功能与轮胎规格的国际标准表示法,提供了轮胎的各种失效形式。采用数值模拟方法对轮胎与地面接触问题进行研究,考虑到轮胎实际结构的复杂性,简化轮胎模型,建立合适的轮胎有限元模型,利用接触对,模拟汽车轮胎与刚性目标面的接触,研究了汽车轮胎在垂直载荷作用下与路面的静态接触,分析了轮胎在垂直载荷作用下接触压力分布和轮胎与地面的接触变形。同时,还模拟轮胎与路面
的滚动接触,系统地分析了轮胎在与刚性路面的滚动接触过程中轮胎与路面间接触压力的分布情况以及轮胎的接触变形,以及不同充气压力和不同垂直载荷作用下轮胎的接触变形和接触压力。
通过轮胎静止状态施加垂直载荷的模拟分析,发现轮胎在垂直荷载作用下接触区域胎侧部位向外膨胀鼓出。接触压力分布对称,接触面中心区域接触压力最大。通过对轮胎滚动过程的模拟,发现接触压力横向分布对称,在胎面两侧出现峰值,向四周扩展开来,逐渐减小,径向分布不对称,轮胎压入面出现峰值。在汽车轮胎充气气压相同的情况下,不同垂直载荷对轮胎造成的接触变形不同,负载为15000N时,轮胎下沉量为49.28mm,负载为5000N时,轮胎下沉量为0.704mm,负载越大,轮胎的变形情况越严重,轮胎与地面接触面积越大,接触压力横向分布曲线峰值点离胎面中心越远。在相同垂直载荷作用下,不同充气气压对轮胎造成的接触变形不同,0.10Mpa充气气压下,轮胎下沉量为71.09mm,充气气压为0.30Mpa时,充气气压为13.97mm,充气气压越大,变形程度越小,轮胎与地面接触面积越小,接触压力分布越集中在接触面中心。
关键词:汽车轮胎;数值模拟;垂直载荷;充气气压;接触压力;接触变形
ABSTRACT
Tire grounding problems have a crucial impact on the safety of automobiles. Research on the problem of contact between automobile tires and ground will help tire designers improve tire structure and material and improve vehicle safety performance. Therefore, it is of great significance to study the contact stress and contact deformation of automobile tires in actual grounding work.
This paper systematically describes the specific structure of the tire, the function of each site and the specific parameters of the tire and the performance of the international standard representation, meanwhile introduces a variety of tire failure forms. And the basic theory of contact, as well as the nonlinear finite element method of contact problem is introduced. The numerical simulation method is used to study the problem of tire and ground contact. Considering the complexity of the actual structure of the tire and simplifying the tire model, the finite element model of the tire is established, and the conta
ct between the tire and the rigid target surface is simulated by contact The contact of the tire under the vertical load is analyzed. The contact stress distribution of the tire under the vertical load and the contact deformation between the tire and the ground are analyzed. At the same time, the rolling contact between the tire and the road surface is simulated, and the distribution of the contact stress between the tire and the road surface and the contact deformation of the tire during the rolling contact with the rigid road surface are systematically analyzed.
Through the simulation analysis of the vertical load applied to the tire quiescent state, it is found that the tires of the contact area under the vertical load are outwardly bulging and bulging, and the tire area is flattened. Contact stress distribution symmetry, contact surface area of the largest contact stress. Through the simulation of the tire rolling process, it is found that the deformation of the tire is similar to that of the tire under the vertical load. The contact stress is symmetrical in the lateral direction and spreads on both sides of the tread, expands to the surroundings, decreases gradually, Radial distribution is asymmetric. In the case of the same tire air pressure, the contact load caus
ed by different vertical loads is different. When the load is 15000N, the tire sinking is 49.328mm. When the load is 5000N, the tire sinking is 0.704mm, the load is bigger , The greater the deformation of the tire, the greater the area of contact with the ground, the greater the contact stress transverse distribution curve peak from the tread center. Under the same vertical load, the contact deformation caused by different inflatable air pressure is different, 0.10Mpa inflatable pressure, the tire sinking amount of 71.109mm, inflatable pressure of 0.30Mpa, the inflatable pressure of 13.997mm, the greater the inflatable pressure, The smaller the degree of deformation, the smaller the contact area between the tire and the ground, the more concentrated the contact stress distribution in the center of the contact surface.
发布评论