装备是人类认识世界和改造世界的工具,具有天然的服务属性,并决定着产业综合技术水平和经济社会的发展质量。在全球新一轮科技革命和产业变革中,数字技术与装备全生命周期深度融合,推动装备向数字化、网络化、智能化的方向不断优化、迭代、升级,从而实现装备的智能化升级和价值重塑。因此,装备的数字化转型是通过装备服务价值链的延伸,促进装备价值体系不断重构并演进的过程。运维服务是装备服务价值链中的重要环节,传统的事后维护和预防性维护都是装备运维服务的重要模式,但随着装备的数字化转型,预测性维护将逐渐成为运维服务的主要模式,并不断推动制造业的服务化发展。然而,预测性维护的发展和应用长期存在瓶颈,对概念与方法的不同理解导致的技术语境不统一、解决方案的不透明导致的数据需求不明确、评价体系的缺失导致的成本收益难以核算等问题,无不困扰着预测性维护技术的发展。值得庆幸的是,预测性维护的从业者们已经认识到了以上问题,正在理论、技术、应用、标准、检测等不同领域积极探索解决方案,其中,标准化无疑是关键且有效的解决途径。《预测性维护——高端装备数字化转型升级指南》巴菲特投资比亚迪以科学性、权威性、指导性和实用性为原则,坚持理论与实践相结合、标准与研发相结合、国外经验与国内应用相结合,兼顾了与预测性维护相关的前沿技术与实施经验,核心内容覆盖了预测性维护从技术
研发、标准制定,到应用实施、验证评价的各个环节。
推荐理由
《预测性维护——高端装备数字化转型升级指南》全面分析和解读现行国际和国内首项预测性维护标准,书中通过31个场景全面介绍预测性维护的功能模型与技术趋势,对预测性维护技术的落地应用具有重要指导意义。通常将预测性维护的从业人员定义为三类,即装备用户、装备制造商和解决方案供应商,其中装备用户包括采购、运行、管理、维护人员,装备制造商是装备的制造或提供方,解决方案供应商通常为第三方机构,但也有可能隶属于装备用户或制造商。本书可以作为预测性维护的三类从业人员的实施参考手册或标准化培训参考教材,也可作为装备制造或应用企业决策层制定企业发展战略的参考材料,还可作为学习预测性维护相关技术的教师或学生的参考资料。拖动右侧滚动条可以查看全目录▼目录
序一——以预测性维护构筑数字化时代的装备安全新防线
序二——持续提升预测性维护技术研究的深度和应用的广度
前言
第1章绪论
第2章数字化转型升级与智能服务
2.1装备数字化转型升级路径
2.2智能运维与预测性维护
第3章预测性维护概念及现状
3.1预测性维护概念
3.2预测性维护现状
3.2.1政策法规
3.2.2应用现状
第4章预测性维护关键技术
4.1状态监测
4.1.1信号采集方法
4.1.2状态监测方法
4.2故障诊断
4.2.1故障诊断基本流程
4.2.2故障诊断方法
4.3寿命预测
4.3.1基于物理模型的寿命预测技术
4.3.2基于数据驱动的寿命预测技术
4.3.3基于数理统计模型的寿命预测技术
4.3.4基于综合模型的寿命预测技术
4.4维修决策
4.4.1维修决策方式
4.4.2维修决策内容
4.4.3维修模型构建
4.5发展方向
4.5.1基于数字孪生的预测性维护
4.5.2基于边缘计算的预测性维护
第5章预测性维护技术发展趋势
5.1趋势分析
5.1.1技术应用维度
5.1.2系统层级维度
5.1.3功能模块维度
5.2技术方向
5.2.1云边协同
5.2.2控诊融合
5.2.3算法测评
5.2.4自适应和自优化模型
5.2.5虚拟维护
5.2.6运维效率评价
东莞违章第6章预测性维护标准体系与核心标准解读
6.1预测性维护标准化现状
6.1.1国际标准化技术组织及研究现状
6.1.2国内标准化技术组织及研究现状
6.1.3小结
6.2预测性维护标准体系
6.3标准化路线图
6.3.1概述
荣威超混erx56.3.2智能制造中的预测性维护技术现状
6.3.3智能制造中预测性维护的关键功能与技术
6.4预测性维护核心标准解读
6.4.1标准内容解读
6.4.2标准实施意义
第7章预测性维护应用案例和场景
7.1案例介绍
7.1.1概述
7.1.2目标
7.1.3角
7.1.4类型
7.2场景分类
7.3工厂或车间的预测性维护场景
7.3.1场景1:基于资产运行状态价值的服务
7.3.2场景2:预测性维护支持自适应工厂概念、用户背景和问题
7.3.3场景3:定制化工厂的预测性维护
7.3.4场景4:冲压生产线预测性维护系统应用
7.3.5场景5:汽车冲压厂的预测性维护
7.3.6场景6:机械加工数字化工厂的预测性维护
7.3.7场景7:船舶起重运输车间的运维服务
10月份汽车销量排行榜7.3.8场景8:海洋石油平台状态监测与远程诊断系统
7.3.9场景9:石化工厂的预测性维护
7.4设备的预测性维护场景
7.4.1场景1:打印系统的预测性维护是数据驱动服务工程的基础
7.4.2场景2:RV减速器的状态监测与寿命预测
7.4.3场景3:运动控制系统的预测性维护和寿命预测
7.4.4场景4:机械设备的预测性维护
7.4.5场景5:大规模工业机器人的预测性维护
7.4.6场景6:点焊设备的预测性维护
单行道标志7.4.7场景7:数控机床的状态监测与寿命预测
7.4.8场景8:风机叶片的状态监测
7.4.9场景9:轴流式和离心式压缩机的预测性维护
7.4.10场景10:超临界大型电力机组的预测性维护
7.4.11场景11:压缩机的预测性维护
7.4.12场景12:数控机床刀具的预测性维护
7.4.13场景13:水平机器人的预测性维护
7.4.14场景14:智能分板机—微铣刀的预测性维护
7.4.15场景15:汽车制造中伺服焊设备的预测性维护
7.4.16场景16:机械泵的预测性维护
7.4.17场景17:电力变压器的预测性维护
7.4.18场景18:自动扶梯的状态监测与故障预警
7.4.19场景19:基于润滑油液IoT的水泥设备预测性维护
7.4.20场景20:石化厂风机的预测性维护
7.4.21场景21:配电室的预测性维护
7.4.22场景22:城市路灯照明系统的预测性维护
附录
附录A预测性维护相关国际标准和规范列表
附录B预测性维护相关国家标准和规范列表
参考文献
东风标致308两厢后记
来源:金粉商城
发布评论