模块二、路程相同速度比等于时间的反比
【例 1】 甲、乙两人同时从A 地出发到B 地,经过3小时,甲先到B 地,乙还需要1小时到达B 地,此
时甲、乙共行了35千米.求A ,B 两地间的距离.
【分析】 甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为4:3,那么在3小时内的路程之
比也是4:3;又两人路程之和为35千米,所以甲所走的路程为4352034
⨯=+千米,即A ,B 两地间的距离为20千米.
【例 2】 在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到
达 B 点,又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?
【解析】 由题意知,甲行 4 分相当于乙行 6 分.(抓住走同一段路程时间或速度的比例关系)
从第一次相遇到再次相遇,两人共走一周,各行 12 分,而乙行 12 分相当于甲行 8 分,所以甲环行一周需 12+8=20(分),乙需 20÷4×6=30(分).
【例 3】 上午 8 点整,甲从 A 地出发匀速去 B 地,8 点 20 分甲与从 B 地出发匀速去 A 地的乙相
遇;相遇后甲将速度提高到原来的 3 倍,乙速度不变;8 点 30 分,甲、乙两人同时到达各自
的目的地.那么,乙从 B 地出发时是 8 点几分.
【解析】  甲、乙相遇时甲走了 20 分钟,之后甲的速度提高到原来的 3 倍,又走了 10 分钟到达目的地,
根据路程一定,时间比等于速度的反比,如果甲没提速,那么后面的路甲需要走10× 3= 30分钟,所以前后两段路程的比为 20 : 30 =2 : 3,由于甲走 20 分钟的路程乙要走 10 分钟,所以甲走 30 分钟的路程乙要走 15 分钟,也就是说与甲相遇时乙已出发了 15 分钟,所以乙从 B 地出发时是 8 点5 分.
【例 4】 小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上
学走这两条路所用的时间一样多.已知下坡的速度是平路的1.6 倍,那么上坡的速度是平路速度的多少倍?
【解析】 设小芳上学路上所用时间为 2,那么走一半平路所需时间是1.由于下坡路与一半平路的长度相同,根据路程一定,时间比等于速度的反比,走下坡路所需时间是51  1.68÷=,因此,走上坡路需要的时间是511288-=,那么,上坡速度与平路速度的比等于所用时间的反比,为111:8:118=,所以,
上坡速度是平路速度的811倍.
【例 5】 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到路程的35
时,出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分
钟必须比原来快多少米?
【分析】 当以原速行驶到全程的35时,总时间也用了35,所以还剩下350(1)205
⨯-=分钟的路程;修理完毕时还剩下20515-=分钟,在剩下的这段路程上,预计时间与实际时间之比为20:154:3=,根据路程一定,速度比等于时间的反比,实际的速度与预定的速度之比也为4:3,因此每分钟应比原来快47507502503
比速汽车是哪个公司
⨯-=米. 小结:本题也可先求出相应的路程和时间,再采用公式求出相应的速度,最后计算比原来快多少,但不如采用比例法简便.
【例 6】  (2008“我爱数学夏令营”数学竞赛)一列火车出发1小时后因故停车0.5小时,然后以原速的3
4
前进,最终到达目的地晚1.5小时.若出发1小时后又前进90公里因故停车0.5小时,然后同样以原速的34
前进,则到达目的地仅晚1小时,那么整个路程为________公里. 【解析】 如果火车出发1小时后不停车,然后以原速的34
前进,最终到达目的地晚1.50.51-=小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为3:4,所以原计划要花()14333÷-⨯=小时,现在要花()14344÷-⨯=小时,若出发1小时后又前进90公里不停车,然后同样以原速的34
前进,则到达目的地仅晚10.50.5-=小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为3:4,所以原计划要花()0.5433  1.5÷-⨯=小时,现在要花()0.54342÷-⨯=小时.所以按照原计划90公里的路程火车要用3  1.5  1.5-=小时,所以火车的原速度为90  1.560÷=千米/小时,整个路程为()6031240⨯+=千米.
【例 7】 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小
时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高1/6,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米?
【解析】 从开始出发,车速即比原计划的速度提高了1/9,即车速为原计划的10/9,则所用时间为原计划
的1÷10/9=9/10,即比原计划少用1/10的时间,所以一个半小时等于原计划时间的1/10,原计划时间为:1.5÷1/10=15(小时);按原计划的速度行驶 280 千米后,将车速提高1/6,即此后车速为原来的7/6,则此后所用时间为原计划的1÷7/6=6/7,即此后比原计划少用1/7的时间,所以1 小时 40 分等于按原计划的速度行驶 280 千米后余下时间的1/7,则按原计划的速度行驶 280 千米后余下的时间为:
5/3÷1/7=35/3(小时),所以,原计划的速度为:84(千米/时),北京、上海两市间的路程为:84 ×15= 1260(千米).
【例 8】 一辆汽车从甲地开往乙地,如果车速提高 20%可以提前1小时到达.如果按原速行驶一段距离
后,再将速度提高 30% ,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?
【解析】 车速提高 20%,即为原速度的6/5,那么所用时间为原来的5/6,所以原定时间为51(1)66÷-=小
时;如果按原速行驶一段距离后再提速 30% ,此时速度为原速度的13/10,所用时间为原来的10/13,
所以按原速度后面这段路程需要的时间为1011(1)4133÷-
=小时.所以前面按原速度行使的时间为156433
-=小时,根据速度一定,路程比等于时间之比,按原速行驶了全部路程的556318
÷=
【例 9】 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前1小时到达;如果以原速行
驶120千米后,再将车速提高25%,则可以提前40分钟到达.那么甲、乙两地相距多少千米?
【分析】 车速提高20%,速度比为5:6,路程一定的情况下,时间比应为6:5,所以以原速度行完全程的时间为65166
-÷=小时. 以原速行驶120千米后,以后一段路程为考察对象,车速提高25%,速度比为4:5,所用时间比
应为5:4,提前40分钟到达,则用原速度行驶完这一段路程需要4054106053
-÷=小时,所以以原速行驶120千米所用的时间为108633-=小时,甲、乙两地的距离为812062703
÷⨯=千米.
【例 10】 甲火车4分钟行进的路程等于乙火车5分钟行进的路程.乙火车上午8:00从B 站开往A 站,开
出若干分钟后,甲火车从A 站出发开往B 站.上午9:00两列火车相遇,相遇的地点离A 、B 两站的距离的比是15:16.甲火车从A 站发车的时间是几点几分?
[分析]甲、乙火车的速度比已知,所以甲、乙火车相同时间内的行程比也已知.由此可以求得甲火车单
独行驶的距离与总路程的比.
根据题意可知,甲、乙两车的速度比为5:4.
从甲火车出发算起,到相遇时两车走的路程之比为5:415:12=,而相遇点距A 、B 两站的距离的比是15:16.说明甲火车出发前乙火车所走的路程等于乙火车1个小时所走路程的
()11612164
-÷=.也就是说乙比甲先走了一个小时的四分之一,也就是15分钟.所以甲火车从A 站发车的时间是8点15分.