第一章 变压器的选择
第一节 概述
在各级电压等级的发输配电中,变压器都是主要电气设备之一,其担任着向用户输送功率,或者两种电压等级之间交换功率的重要任务,同时兼顾电力系统负荷增长情况,并根据电力系统510年发展规划综合分析,合理选择,否则,将造成经济技术上的不合理。如果主变压器容量造的过大,台数过多,不仅增加投资,扩大占地面积,而且会增加损耗,给运行和检修带来不便,设备亦未能充分发挥效益;若容量选得过小,可能使变压器长期在过负荷中运行,影响主变压器的寿命和电力系统的稳定性。因此,确定合理的变压器的容量是发电厂安全可靠供电和网络经济运行的保证。
在生产上电力变压器制成有单相、三相、双绕组、三绕组、自耦以及分裂变压器等,在选择主变压器时,要根据原始资料和设计发电机组的容量大小和自身的特点,在满足可靠性的前提下,要考虑到经济性来选择主变压器。
选择主变压器的容量,同时要考虑到该发电厂以后的扩建情况来选择主变压器的台数及容量。
第二节  主变压器容量的选择
因为每千瓦的发电设备投资远大于每千瓦变电设备的投资。为此,在选择发电厂主变压器时,应遵循以下基本原则。
1、单元接线的主变压器
单元接线的变压器容量应按发电机的额定容量扣除本机组的厂用负荷后,留有10%的裕度来确定。采用扩大单元接线时,应尽可能采用分裂绕组变压器,其容量应按单元接线的计算原则计算出的两台机容量之和来确定。
2、具有发电机电压母线接线的主变压器
连接在发电机电压母线与系统之间的主变压器的主变压器的容量,应考虑以下因素:
2.1 当发电机全部投入运行时候,在满足发电机电压供电的日最小负荷,并扣除厂用负荷后,主变压器应能将发电机电压母线上的剩余有功和无功容量送入系统。
2.2 当接在发电机电压母线上的最大一台机组检修或者因供热机组热负荷变动而需限制本厂
出力时,主变压器应能从电力系统到送功率,保证发电机电压母线上最大负荷的需要。
2.3 若发电机电压母线上接有2台及以上的主变压器时,当其中容量最大的一台因故退出运行时,其他主变压器应能输送母线剩余功率的70%以上。
2.4 在在店里市场环境下,中、小火电机组的高成本电量面临“竞价上网”的约束,特别是在夏季丰水季节处于不利地位,加之“以热定电”的中、小热电厂在夏季热力负荷减少的情况下,可能停用火电厂的部分或全部机组,主变压器应具有从系统到送功率的能力,以满足发电机电压母线上最大负荷的要求。
3、连接两种升高电压母线的联络变压器
联络变压器的台数一般只设置1台,最多不超过2台。这是考虑到布置和引线的方便。联络变压器的容量选择应考虑以下两点:
3.1 联络变压器容量应能满足两种电压网络在各种不同运行方式下有功功率和无功功率交换。
3.2 联络变压器容量一般不应小于接在两种电压母线是最大一台机组的容量,以保证最大一台机组故障或检修时,通过联络变压器来满足本侧负荷的要求;同时,也可在线路检修或故障时,通过联络变压器将剩余容量送入另一个系统。
第三节  主变压器形式的选择
1、变压器型式和结构的选择原则
1.1  主变压器相数的选择
容量为300MW及以下机组单元连接的主变压器和330KV及以下电力系统中,一般都应选用三相变压器。因为单相变压器组相对来讲投资大,占地多,运行损耗大,同时配电装置以及断电保护和二次接线的复杂化,也增加了维护及倒闸操作的工作量。
容量为600MW机组单元接线的主变压器和500KV电力系统中的主变压器应综合考虑运输和制造条件,经技术经济比较,可采用单相组成三相变压器。
本次设计的发电厂升压站部分,位于市郊区,稻田、丘陵,交通便利,不受运输的条件限制,而应尽量少占用稻田、丘陵,故本次设计的变电站选用三相变压器。
1.2、绕组数的选择
电力变压器按每相的绕组数分为双绕组、三绕组或更多绕组等型式;按电磁结构分为普通双绕组、三绕组、自耦式及低压绕组分裂是等型式。
机组容量为200MW以上的发电厂采用发电机-双绕组变压器单元接线接入系统,而两种升高电压级之间加装联络变压器更为合理。这是由于机组容量大,其额定电流及短路电流都很大,发电机出口断路器制造困难,价格昂贵,且对供电可靠性要求较高,所以,一般在发电机回路及厂用分支回路均采用分相封闭母线,而封闭母线回路中一般不装设断路器和隔离开关。况且,三绕组变压器由于制造上的原因,中压侧不留分接头,只作死抽头,不利于高、中压侧的调压和负荷分配。此时,联络变压器宜选用三绕组变压器(或自耦变压器),低压绕组可作为厂用备用电源或厂用启动电源,亦可连接无功补偿装置。
扩大单元接线的主变压器,应优先选用低压分裂绕组变压器,可以大大限制短路电流。
发电厂以两种升高电压级向用户或与系统连接时,可以采用2台双绕组变压器或三绕组变压器。根据该厂发电机组为单元接线,主变宜采用双绕组变压器。
1.3、主变调压方式的选择
为了满足用户的用电质量和供电的可靠性,电压必须维持在允许范围内。通过改变变压器220KV及以上网络电压应符合以下标准:的分接头切换,改变变压器高压侧绕组匝数,从而改变其变比,实现电压调整。切换方式有两种:一种是不带电切换,称为无激磁调压,调整范围通常在±2×2.5%以内,应视具体工程情况而定。另一种是带负荷切换,称为有载调压,调整范围可达30%。其结构较复杂,价格较贵,只在以下情况才予以选用:
1.3.1 接于出力变化大的发电厂的主变压器,特别是潮流方向不固定,且要求变压器二次电压维持在一定水平;
1.3.2 接于时而为送端,时而为受端,具有可逆工作特点的联络变压器,为保证供电质量,要求母线电压恒定时。
通常,发电厂主变压器中很少采用有载调压,因为可以通过调节发电机励磁来实现调节电压,对于220KV及以上的降压变也仅在电网电压有较大变化的情况时使用,一般均采用无激磁调压,分接头的选择依据具体情况而定。
因此本次选用的主变压器不采用有载调压。
1.4、连接组别的选择
汽车油箱容量
变压器绕组的连接方式必须和系统电压相位一致,否则不能并列运行。一般有星形“Y”和三角形“D”两种。
1.5、主变压器冷却方式的选择
主变压器一般采用的冷却方式有:自然风冷却,强迫油循环风冷却,强迫油循环水冷却。
自然风冷却:一般只适用于小容量变压器。
强迫油循环水冷却,虽然散热效率高,节约材料减少变压器本体尺寸等优点。但是它要有一套水冷却系统和相关附件,冷却器的密封性能要求高,维护工作量较大。所以,选择强迫油循环风冷却。
选择两台容量为370MVA的主变,主变总容量为740MVA
本设计主变为大型变压器,发热量大,散热问题不可轻佻,强迫油循环风冷却效果较好,再根据该发电厂建在郊区,通风条件好,可选用强迫油循环风冷却方式。