线控转向是自动驾驶汽车实现路径跟踪与避障避险必要的关键技术,其性能直接影响主动安全与驾乘体验。在国际汽车工程师协会(Society of Automotive Engi⁃neers,SAE)发布的5级自动驾驶体系中:
∙ 第1级为驾驶辅助,要求对转向或加、减速中单独一项进行自动控制;
∙ 第2级为部分自动驾驶,要求对转向和加、减速中的2项进行自动控制;
∙ 第3级及以上分别为有条件自动驾驶、高度无人驾驶和完全自动驾驶,要求转向逐步与其他子系统实现高度自主协同 。
线控转向系统为自动驾驶汽车实现自主转向提供了良好的硬件基础,且线控转向系统被认为是实现高级自动驾驶的关键部件之一 ,具有以下优点:
∙ 线控转向技术由于可实现驾驶员操作和车辆运动的解耦
∙ 可提高紧急情况下转向操作正确性和驾驶员安全性
通用自动驾驶汽车∙ 采用电机控制直接驱动实现车辆转向,因此更容易与车辆其他主动安全控制子系统进行通讯和集成控制。
与传统的转向系统不同,线控转向系统取消了从转向盘到转向执行器之间的机械连接,完全由电控系统实现转向,可以摆脱传统转向系统的各种限制,汽车转向的力传递特性和角度传递特性的设计空间更大,更方便与自动驾驶其他子系统(如感知、动力、底盘等)实
现集成,在改善汽车主动安全性能、驾驶特性、操纵性以及驾驶员路感方面具有优势。
1.线控转向系统发展概况
线控转向的概念起源于20世纪50年代,美国天合(TRW)公司最早提出用控制信号代替转向盘和转向轮之间的机械连接,之后德国Kasselmann 和Keranen设计了早期的线控转向模型。受制于电子控制技术,直到20世纪90年代,线控转向技术才有较大进展,美国、欧洲、日本在线控转向的研发与推广方面比较活跃,一些采用线控转向系统的概念车陆续展出。
2013年,英菲尼迪的“Q50”成为第1款应用线控转向技术的量产车型 。该线控转向系统由路感反馈总成、转向执行机构和3个电控单元组成,其中双转向电机的电控单元互相实现备份,可保证系统的冗余性能,转向柱与转向机间的离合器能够在线控转向系统出现故障时自动接合,保证紧急工况下依然可实现对车辆转向的机械操纵。
发布评论