汽车试验以及设施
1.汽车整车性能试验
  汽车性能试验是为了测定汽车的基本性能而进行的试验。主要包括以下这些试验: (1)动力性能试验 对常用的3个动力性能指标,即对汽车的最高车速、加速和爬坡性能进行实际试验。最高车速试验的目的是测定汽车所能达到的最高车速,我国规定的测试区间是16km试验路段的最后500m。加速试验一般包括起步到给定车速、高速挡或次高速挡,以及从给定初速加速到给定车速两项试验内容。爬坡试验包括最大爬坡度与爬长坡两项试验。最大爬坡度试验最好在坡度均匀、测量区间长20m以上的人造坡道上进行,如果人造坡道的坡度对所测车不合适(例如坡道过大或过小),可采用增、减载荷或变换排挡的办法做试验,再折算出最大爬坡度;爬长坡试验主要用来检查汽车能否通过坡度为7—10%、长lOkm以上的连续长坡,试验中不仅要记录爬坡过程中的换挡次数、各挡位使用时间和爬坡总时间,还要观察发动机冷却系统有无过热,供油系统有无气阻或渗漏等现象。 (2)燃料经济性试验 通常做道路试验或做汽车测功器(亦即转鼓试验台)试验,后者能控制大部分的使用因素,重复性好,能模拟实际行驶的复杂情况,能采用各种测量油耗的方法,还能同时测量废气排放。 (3)制动性
能试验 汽车制动性能的优劣直接关系到汽车行驶的安全性,用制动效能和制动效能的稳定性评价。常进行制动距离试验、制动效能试验(测.制动踏板力和制动减速度关系曲线)、热衰退和恢复试验、浸水后制动效能衰退和恢复试验等。 (4)操纵稳定性试验 试验类型较多,如用转弯制动试验评价汽车在弯道行驶制动时的行驶方向稳定性;用转向轻便性试验评价汽车的;转向力是否适度;用蛇形行驶试验来评价汽车转向时的随从性、收敛性、转向力大小、侧倾程度和避免事故的能力;用侧向风敏感性试验来考察汽车在侧向风情况下直线行驶状态的保持性;用抗侧翻试验考察汽车在为避免交通事故而急打方向盘时汽车是否有侧翻危险;用路面不平度敏感性试验来检查汽车高速行驶时承受路面干扰而保持直线行驶的能力;用汽车稳态回转试验确定汽车稳态转向特性等。 (5)平顺性试验 平顺性主要是根据乘坐者的舒适程度来评价的,所以又叫做乘坐舒适性,其评价方法通常根据人体对震动的生理感受和保持货物的完整程度确定。典型的试验有汽车平顺性随机输入行驶试验和汽车平顺性单脉冲输入行驶试验,前者用以测定汽车在随机不平的路面上行驶时,其震动对乘员或货物的影响;后者用以评价汽车行驶中遇到大的凸起物或凹坑冲击震动时的平顺性。 (6)通过性试验一般在汽车试验场和专用路段上进行该试验。 (7)安全性试验 安全性试验项目很多,而且耗资巨大,特别是碰撞安全试验,除正面撞车试验外,近来还增加侧
面撞车试验。可以进行实车撞车试验,也可以进行模拟试验或撞车模拟计算;但不少国家规定新车型必须经过实车撞车试验,以验证其撞车安全性。在撞车试验中需用假人(又称人体模型)进行试验,对人体模型的要求是,其质量、尺寸分布,主要骨骼关节和动作等尽量逼近真人,又要容易测定各部位的加速度、载荷和变形;人体模型价格较高,因此也要求具有高的耐用性。当进行车内装置(如安全带、座椅、方向盘、仪表板等)抗冲撞能力试验时,为节省开支常用撞车模拟装置进行,它以装有人体模型的平台车代替实车,摸拟以一定初速运动的汽车撞击固定壁后部件的减速度特性,从而研究冲击能量的吸收情况。
  2.汽车零部件试验
  尽管汽车零部件种类繁多,其试验通常是性能、强度、耐久性等内容。发动机是汽车中最重要的总成,其性能试验主要有功率、怠速、空转特性、负荷特性、调速特性、起动、机械效率、多缸工作均匀性、排放和噪声等试验。对发动机的重要零部件(如曲轴、连杆、活塞等运动件和缸盖、缸体等固定件)应进行强度试验,整机和重要部件常需进行耐久性试验,重要部件的耐久性试验可在专门的试验台上进行,整机的耐久性试验则在发动机台架上进行。为了缩短试验时间,通常强化试验条件,如在额定工况、全负荷最大扭矩工况、
超负荷超转速工况下运转。耐久性试验前后要全面测量尺寸和性能,以便评价磨损情况和动力性、经济性、排放等指标的稳定程度。许多汽车承载系统的寿命都与道路汽车系统产生的随机震动特性有关,因此可以按载荷谱提供激震力(或位移)的电子液压震动试验台,它成了许多零部件试验中不可缺少的加载工作台。
  汽车试验场
  汽车试验场,亦称试车场,是重现汽车使用过程中遇到的各种道路条件和使用条件,进行汽车整车道路试验的场所,为满足汽车的试验要求,汽车试验场将实际存在的各种道路经过集中、浓缩、不失真地强化形成典型化的道路。汽车试验场的主要试验设施是集中修筑的各种试验道路,如高速环形跑道、高速直线跑道、可靠性强化试验路段、耐久性试验跑道、爬坡试验路以及特殊试验路段’(如噪声试验路段、比利时路”[注』、搓板路、随机波形路、扭曲路、越野路、涉水路等) 由于汽车试验在汽车开发过程中处于极为重要的地位,许多汽车企业都投入巨额资金修建大型的汽车综合试验场,例如通用汽车公司的密尔福德试验场、日本汽车研究所试验场、英国汽车工业研究协会(MIRA)试验场、我国海南汽车试验场等。
  试验场的道路设施主要有:
  1.高速环形跑道 []按一定的规律铺上各种石块的汽车试验道路。高速环形跑道是平面形状,长度约4-8km,多数采用两端圆形路和中间直线路的形状,也有椭圆形或其他形状;设有3-5条车道。这种跑道的设计最高车速通常在2mhh以上,可供汽车长时间持续高速行驶,以考验汽车的高速性能和零部件的可靠性。
  2.高速直线跑道高速直线跑道是水平直线路,长度约25-4km,可供汽车作动力性、制动性和燃料经济性试验。为了节省建设费用,许多试验场将高速直线跑道设置在高速环形跑道的直线部分,两者结合使用。
  3.可靠性、耐久性试验道路 模仿汽车使用寿命中在各种好路和坏路上行驶的情况,在汽车试验场内,除了建造沥青路外,也建造沙土路和各种不同的砾石路,以便进行强化试验,使汽车能在较短的行驶里程内就能暴露问题。
  4.扭曲试验路 汽车在这种道路上行驶时,车身和车架、前后轴).悬架,以及汽车传动系都产生反复扭转,以考验这些部件的性能。
  5。坡路 汽车试验场通常还建有各种坡度的坡路,用以检验汽车的爬坡能力,还可考察驻车制动器(手刹)在坡道上的停车能力、汽车在坡路上起步时离合器的工作状况等。
  6.操纵性、稳定性试验设施 操纵性、稳定性试验设+施最常见的是圆形广场,直径为100m,可供汽车转向或绕“8”字形行驶试验。有的圆形广场还备有洒水装置,使地面生成均匀的水膜以测试汽车韵侧滑情况。易滑路是用来试验汽车在冰雪或附着条件很低的路况下的行驶性能和制动性能,采用磨光、洒水、冰雪等方法降低路面的附着系数。横向风路段是考验汽车空气动力稳定性的设施。丰田汽车公司是在试车道路旁排列有15个直径为27m的大型风扇,可产生类似垂直于道路的横向风,以考验汽车在横向侧风作用下的操纵性能。
  7.涉水池 涉水池有浅水池(水深约02m)或深水池(水深1—2m)两种,用以检查汽车涉水时水对汽车各种部件的影响,如电气设备、制动器、发动机进/排气管浸水后的工作情况等。
  汽车风洞
  汽车风洞就是用来研究汽车空气动力学的一种大型试验设施。其实风洞不是个洞,而是一条大型隧道或管道,里面有一个巨型扇叶,能产生一股强劲气流。气流经过一些风格栅,减少涡流产生后才进人试验室。风洞的最大作用是用来测量汽车的风阻,风阻的大小用风阻系数CD表示,风阻系数越小,说明它受空气阻力影响越小。
  当然,除了用来测量风阻外,风洞还可以用来研究气流绕过车身时所产生的效应,如升力、下压力,还可以模拟不同的气候环境,如炎热二寒冷、下雨或下雪等情况。这样,工程师们便可以知道汽车在不同环境下的工作情况,特别是冷却水箱散热、制动器散热等问题。
  新车在造型设计阶段,必须将汽车制成风洞试验模型进行风洞试验,以便改进汽车的形状,提高空气动力性能。+按照尺寸的大小,风洞可分为供缩小比例模型试验的风洞和供整车试验的大型风洞,按照气流流动的形式,风洞又可分为直流式和回流式两种。用道路试验的办法,不可能同时测得空气作用力的6个分力,因而风洞试验就成为研究汽车空气动力性能的最有效的手段,风洞是在飞机制造业最先应用的。从20世纪60年代起,世界各大汽车公司和有关机构开始建立自己的风洞试验室。如大众汽车公司的多用途风洞实验室可模
拟多种环境条件下的汽车风洞实验,空气温度可在-30-45度调节,湿度为5-95%,最大风速为180kmh
  目前我国最大型的风洞是中国航空动力研究所的风洞实验室。它主要承担中国航天和航空机械的风洞实验任务,也可用作汽车、建筑物、运动设备的风洞实验,最大风速100ns。风洞的洞体由收缩段2、试验段3和扩散段5组成。在电动机8汽车涉水带动的风扇7作用下,空气从蜂窝栅1(起整流作用)进入风洞,经收缩段加速而进入试验段,再经扩散段流出。在试验段3中放置汽车模型4,其下部的固定装置9与测定6个分力的天平相连,通过工作室10中的相关仪器可测定汽车承受空气作用力的情况。风洞试验还可测定汽车模型表面的压力分布情况以及借助于烟、丝带、油膜等显示汽车周围的气流流动情况。