【中考数学】二元一次方程组易错压轴解答题练习题(含答案)
一、二元一次方程组易错压轴解答题
1.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
(1)求每台A型电脑和每台B型打印机的价格分别是多少元?
(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机? 2.文雅书店出售A,B两种书籍,已知A书籍单售为每本50元,B书籍单售为每本30元,整套(A,B各一本)出售为每套70元。
(1)小明购买了A,B两种书籍共20本,且购买的B书籍数量比A书籍数量的2倍少4本。
①小明购买了A,B两种书籍各多少本?
②小明至少需要花费多少钱?
(2)如果小刚花了600元购买A,B两种书籍,其中A书籍购买了8本,那么有哪几种购买方案?其中哪一种方案最划算?
3.菜矿泉水厂在山脚下筑有水池蓄水,山泉水不停地流入水池,水池底部有大小两个排水口,
(1)当蓄水到吨时,需要截住泉水清理水池。若开放小排水口小时,再开放大排水口分钟,能排完水池半的水:若同时开放两个排水口小时,刚好把水排完.求两个排水口每分钟的流量;
(2)现关闭排水口,开放泉水放满水池后,泉水仍以固定的流量流入水池.若用-台抽水机抽水,小时刚好把水抽完;若用台抽水机抽水,分钟刚好把水抽完。证明:抽水机每分针的抽水量是泉水流量的倍;
(3)在的条件下,若用台抽水机抽水,需要名长时间刚好把水池的水抽完?
4.李师傅要给一块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等,B款瓷砖的长大于宽.已知一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:
(1)分别求出每款瓷砖的单价.
(2)若李师傅买两种瓷砖共花了1000元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?
(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为________米(直接写出答案).
5.王大厨去超市采购鸡蛋超市里鸡蛋有A,B两种包装,其中各鸡蛋品质相同,且只能整盒购买,商品信息如下:
A包装盒B包装盒
每盒鸡蛋个数(个)38
每盒价格(元)511
y盒
①则共买鸡蛋________个,需付________元(用含x,y的代数式表示)
②若王大厨买了AB两种包装共15盒,一共买到90个鸡蛋,请问王大厨花了多少钱? ________
(2)①若王大厨正好买了100个鸡蛋,则他最少需要花________元。
②若王大厨恰好花了180元,则他最多可买到鸡蛋________个。
6.某自行车制造厂开发了一款新式自行车,计划6月份生产安装600辆,由于抽调不出足够的熟练工来完成新式自行车的安装,工厂决定招聘一些新工人:他们经过培训后也能独立进行安装.调研部门发现:1名熟练工和2名新工人每日可安装8辆自行车;2名熟练工和3名新工人每日可安装14辆自行车。
(1)每名熟练工和新工人每日分别可以安装多少辆自行车?
(2)如果工厂招聘n名新工人(0<n<10).使得招聘的新工人和抽调熟练工刚好能完成6月份(30天)的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)该自行车关于轮胎的使用有以下说明:本轮胎如安装在前轮,安全行使路程为12千公里;如安装在后轮,安全行使路程为8千公里.请问一对轮胎能行使的最长路程是多少千公里?
7.为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。
(1)求文具袋和圆规的单价:
(2)学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案
方案一:购买一个文具袋还送1个圆规
方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.
①设购买圆规m个(m≥20),则选择方案一的总费用为________ ,选择方案二的总费用为________ 。
②若学校购买圆规100个,则选择哪种方案更合算?请说明理由 ________
8.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:
销售时段销售数量销售收入
A种型号B种型号
第一周3台4台1200元
第二周5台6台1900元
-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由。买轮胎
9.如图,长青农产品加工厂与 A,B 两地有公路、铁路相连.这家工厂从 A 地购买一批原料甲运回工厂,经过加工后制成产品乙运到 B 地,其中原料甲和产品乙的重量都是正整数. 已知铁路运价为 2 元/(吨·千米),公路运价为 8 元/(吨·千米).
(1)若由A 到B 的两次运输中,原料甲比产品乙多9 吨,工厂计划支出铁路运费超过5700 元,公路运费不超过 9680 元.问购买原料甲有哪几种方案,分别是多少吨?
(2)由于国家出台惠农政策,对运输农产品的车辆免收高速通行费,并给予一定的财政补贴,综合惠农政策后公路运输价格下降 m( 0 < m < 4 且 m 为整数)元,若由 A 到 B 的两次运输中,铁路运费为 5760 元,公路运费为 5100 元,求 m 的值.
10.对x,y定义一种新运算F,规定:F(x,y)=ax+by(其中a,b均为非零常数).例如:F(3,4)=3a+4b.
(1)已知F(1,﹣1)=﹣1,F(2,0)=4.
①求a,b的值;
②已知关于p的不等式组,求p的取值范围;
(2)若运算F满足,请你直接写出F(m,m)的取值范围(用含m
的代数式表示,这里m为常数且m>0).
11.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻
的图形只有一条公共边.
(1)小红首先用根小木棍摆出了个小正方形,请你用等式表示之间的关系:________;
(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?
(3)小红重新用50根小木棍,摆出了排,共个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示之间的关系,并写出所有
可能的取值.
12.一个长方形的长和宽分别为x厘米和y厘米(x,y为正整数),如果将长方形的长和宽各增加5厘米得到新的长方形,面积记为,将长方形的长和宽各减少2厘米得到新的长方形,面积记为.
(1)请说明:与的差一定是7的倍数.
(2)如果比大196 ,求原长方形的周长.
(3)如果一个面积为的长方形和原长方形能够没有缝隙没有重叠的拼成一个新的长方形,请出x与y的关系,并说明理由.
【参考答案】***试卷处理标记,请不要删除
一、二元一次方程组易错压轴解答题
1.(1)解:设A型电脑每台x元,B型打印机每台y元,
则 {x+2y=62002x+y=7900 ,
解得: {x=3200y=1500 ,
答:A型电脑每台3200元,B型打印机每台1500元.
解析:(1)解:设A型电脑每台x元,B型打印机每台y元,
则,
解得:,
答:A型电脑每台3200元,B型打印机每台1500元.
(2)解:设A型电脑购买a台,则B型打印机购买(a+1)台,
则3200a+1500(a+1)≤20000,
47a+15≤200,
47a≤185,
,
∵a为正整数,
∴a≤3,
答:学校最多能购买4台B型打印机.
【解析】【分析】(1)二元一次方程组的实际应用:
①根据题意,适当的设出未知数;
②出题中能概括数量间关系的等量关系;
③用未知数表示等量关系中的数量;
④列出等量关系式,并求出其解,他的解要使实际问题有意义,或是符合题意.
(2)一元一次不等式解决实际问题的应用:
①根据题意,适当的设出未知数;
②出题中能概括数量间关系的不等关系;
③用未知数表示不等关系中的数量;
④列出等量关系式,并求出其解集;
⑤检验并根据实际问题的要求写出符合题意的解或解集,并写出答案. 2.(1)解:①设小明购买了A书籍x本、B书籍y本,
则由题意得: {x+y=20y=2x-4
得: {x=8y=12
答:小明购买了A书籍8本、B书籍12本
②花费最少的方案为:购买8套书籍
解析:(1)解:①设小明购买了A书籍x本、B书籍y本,
则由题意得:
得:
答:小明购买了A书籍8本、B书籍12本
②花费最少的方案为:购买8套书籍和4本B书籍,即:8×70+4×30=680(元)答:至少需要花费680元
(2)解:设单独购买A书籍a本,B书籍b本,整套购买c套,
则50a+30b+70c=600①
c=8-a②
将②代入①,整理得:a= b-2,
∵a,b均为正整数,且a≤8,
∴,,
∴有三种购买方案:
方案一:单买A书籍1本,单买B书籍2本,整套买7套,
发布评论