一、概念解释(选其中8题,计20分)
1 回正力矩
轮胎发生侧偏时会产生作用于轮胎绕轴的回正力矩。是圆周行驶时使转向车轮恢复到直线行驶位置的主要恢复力矩之一。回正力矩是由接地面内分布的微元侧向反力产生的。车轮静止受到侧向力后,印迹长轴线与车轮平面平行,线上各点相对于平面的横向变形均为,即地面侧向反作用力沿线均匀分布。车轮滚动时线不仅与车轮平面错开距离,且转动了角,因而印迹前端离车轮平面近,侧向变形小;印迹后端离车轮平面远,侧向变形大。地面微元侧向反作用力的分布与变形成正比,故地面微元侧向反作用力的合力大小与侧向力相等,但其作用点必然在接地印迹几何中心的后方,偏移距离,称为轮胎拖距。就是回正力矩。
由汽车行驶方程式可导出
则被定义为汽车动力因数。以为纵坐标,汽车车速为横坐标绘制不同档位的的关系曲线图,即汽车动力特性图。
3 汽车动力性及评价指标
汽车动力性,是指在良好、平直的路面上行驶时,汽车由所受到的纵向外力决定的、所能达到的平均行驶速度。汽车动力性的好坏通常以汽车加速性、最高车速及最大爬坡度等项目作为评价指标。动力性代表了汽车行驶可发挥的极限能力。
4 同步附着系数
两轴汽车的前、后制动器制动力的比值一般为固定的常数。通常用前制动器制动力对汽车总制动器制动力之比来表明分配比例,即制动器制动力分配系数。它是前、后制动器制动力的实际分配线,简称为线。线通过坐标原点,其斜率为。具有固定的线与I线的交点处的附着系数,被称为同步附着系数,见下图。它表示具有固定线的汽车只能在一种路面上实现前、后轮同时抱死。同步附着系数是由汽车结构参数决定的,它是反应汽车制动性能的一个参数。
5 汽车通过性几何参数
汽车通过性的几何参数是与防止间隙失效有关的汽车本身的几何参数。它们主要包括最小离地间隙、接近角、离去角、纵向通过角等。另外,汽车的最小转弯直径和内轮差、转弯通道圆及车轮半径也是汽车通过性的重要轮廓参数。
6 附着椭圆
汽车运动时,在轮胎上常同时作用有侧向力与切向力。一些试验结果曲线表明,一定侧偏角下,驱动力增加时,侧偏力逐渐有所减小,这是由于轮胎侧向弹性有所改变的关系。当驱动力相当大时,侧偏力显著下降,因为此时接近附着极限,切向力已耗去大部分附着力,而侧向能利用的附着力很少。作用有制动力时,侧偏力也有相似的变化。驱动力或制动力在不通侧偏角条件下的曲线包络线接近于椭圆,一般称为附着椭圆。它确定了在一定附着条件下切向力与侧偏力合力的极限值。
7 地面制动力
制动力习惯上是指汽车制动时地面作用于车轮上的与汽车行驶方向相反的地面切向反作用力。制动器制动力等于为了克服制动器摩擦力矩而在轮胎轮缘作用的力。式中:是车轮制动器摩擦副的摩擦力矩。从力矩平衡可得地面制动力为。地面制动力是使汽车减速的外力。它不但与制动器制动力有关,而且还受地面附着力的制约。
8 汽车制动性能
汽车制动性能,是指汽车在行驶时能在短距离停车且维持行驶方向稳定性和在下长坡时能维持一定车速的能力。另外也包括在一定坡道能长时间停放的能力。汽车制动性能是汽车的重要使用性能之一。它属于主动安全的范畴。制动效能低下,制动方向失去稳定性常常是导致交通安全事故的直接原因之一。
9 汽车最小离地间隙
汽车最小离地间隙C是汽车除车轮之外的最低点与路面之间的距离。它表征汽车无碰撞地越过石块、树桩等障碍物的能力。汽车的前桥、飞轮壳、变速器壳、消声器和主传动器外
壳等通常有较小的离地间隙。汽车前桥的离地间隙一般比飞轮壳的还要小,以便利用前桥保护较弱的飞轮壳免受冲碰。后桥内装有直径较大的主传动齿轮,一般离地间隙最小。在设计越野汽车时,应保证有较大的最小离地间隙。
10 曲线
简单地说,线组就是当后轮制动抱死时,汽车前后轮制动力关系。当后轮抱死时,存在。因为,并且,所以有,将式表示成的函数形式,则得出汽车在不同路面上只有后轮抱死时的前、后地面制动力的关系式为,不同值代入式中,就得到线组,见下图。线组与横坐标的交点为,而与的取值无关。当时,。由于线组是经过(,0)的射线,所以取不同的值就可得出线组。
span style='mso-ignore:vglayout; ;z-index:1;margin-left:-3px;margin-top:0px;width:203px; height:195px' |
11 最小燃油消耗特性
发动机负荷特性的曲线族的包络线是发动机提供一定功率时的最低燃油消耗率曲线。利用包络线就可出发动机提供一定功率时的最经济工况(负荷和转速)。把各功率下最经济工况的转速和负荷率标明在外特性曲线图上,便得到最小燃油消耗特性。
12 滑动(移)率
仔细观察汽车的制动过程,就会发现轮胎胎面在地面上的印迹从滚动到抱死是一个逐渐变化的过程。轮胎印迹的变化基本上可分为三个阶段:第一阶段,轮胎的印迹与轮胎的花纹基本一致,车轮近似为单纯滚动状态,车轮中心速度与车轮角速度存在关系式;在第二阶段内,花纹逐渐模糊,但是花纹仍可辨别。此时,轮胎除了滚动之外,胎面和地面之间的滑动成份逐渐增加,车轮处于边滚边滑的状态。这时,车轮中心速度与车轮角速度的关系为,且随着制动强度的增加滑移成份越来越大,即;在第三阶段,车轮被完全抱死而拖滑,轮胎在地面上形成粗黑的拖痕,此时。随着制动强度的增加,车轮的滚动成份逐渐减少,滑动成份越来越多。一般用滑动率描述制动过程中轮胎滑移成份的多少,即滑动率的数值代表了车轮运动成份所占的比例,滑动率越大,滑动成份越多。一般将地面制动力与地面法向反作用力(平直道路为垂直载荷)之比成为制动力系数。
13 侧偏力
汽车行驶过程中,因路面侧向倾斜、侧向风或曲线行驶时离心力等的作用,车轮中心沿轴方向将作用有侧向力,在地面上产生相应的地面侧向反作用力,使得车轮发生侧偏现象,这个力称为侧偏力。
14 等效弹簧
车厢(或车身)在发生侧倾时,所受到悬架的弹性恢复力相当于一个具有悬架刚度的螺旋弹簧,称之为等效弹簧。
二、写出表达式、画图、计算并简单说明(选择其中4道题,计20分)
1用结构使用参数写出汽车行驶方程式(注意符号定义)。
汽车行驶方程式的普遍形式为
,即
式中:-驱动力;-滚动阻力;-空气阻力;-坡道阻力;-加速阻力;-发动机输出转矩;-主减速器传动比;-变速器档传动比;-传动系机械效率;-汽车总质量;-重力加速度;-滚动阻力系数;-坡度角;-空气阻力系数;-汽车迎风面积;-汽车车速;-旋转质量换算系数;-加速度。
2 画图并说明地面制动力、制动器制动力、附着力三者关系。
① 当踏板力较小时,制动器间隙尚未消除,所以制动器制动力,若忽略其它阻力,地面制动力,当(为地面附着力),;②当时,且地面制动力达到最大值,即;③当时,,随着的增加不再增加。 汽车飞轮
3 画出附着率(制动力系数)与滑动率关系曲线,并做必要说明
① 当车轮滑动率S较小时,制动力系数随S近似成线形关系增加,当制动力系数在S=20%附近时达到峰值附着系数。
② 然后随着S的增加,逐渐下降。当S=100%,即汽车车轮完全抱死拖滑时,达到滑动附着系数,即。对于良好的沥青或水泥混凝土道路相对下降不多,而小附着系数路面如潮湿或冰雪路面,下降较大。
③ 而车轮侧向力系数(侧向附着系数)则随S增加而逐渐下降,当s=100%时,,即汽车完全丧失抵抗侧向力的能力,汽车只要受到很小的侧向力,就将发生侧滑。
④ 只有当S约为20%(12~22%)时,汽车才不但具有最大的切向附着能力,而且也具有较大的侧向附着能力。
4 用隔离方法分析汽车加速行驶时整车(车身)的受力分析图,并列出平衡方程
图中和式中:分别是车身质量、加速度、后轴对车身的推力、前轴对车身的阻力、空气阻力、经传动系传至车轮轮缘的转矩、发动机曲轴输出转矩、飞轮转动惯量、飞轮角加速度、主传动器速比、变速器速比、传动系机械效率、轮缘对地面的作用力、车轮滚动半径。
5 列出可用于计算汽车最高车速的方法,并加以说明。
①驱动力-行驶阻力平衡图法,即使驱动力与行驶阻力平衡时的车速
②功率平衡图法,即使发动机功率与行驶阻力功率平衡时的车速
③动力特性图法,即动力因数与道路阻力系数平衡
6 写出汽车的燃料消耗方程式,并解释主要参数(注意符号定义)。
,式中:分别是百公里油耗(L/100km)、发动机功率(kW)、发动机燃料消耗率(或比油耗,)、车速(km/h)和燃油重度(N/L)。
7 列举各种可用于绘制I曲线的方程及方程组
①如已知汽车轴距、质心高度、总质量、质心的位置(质心至后轴的距离) 就可用前、后制动器制动力的理想分配关系式绘制I曲线。
②根据方程组也可直接绘制I曲线。
假设一组值(=0.1,0.2,0.3,……,1.0),每个值代入方程组(4-30),就具有一个交点的两条直线,变化值,取得一组交点,连接这些交点就制成I曲线。
③利用线组和线组对于同一值,线和线的交点既符合,也符合。取不同的值,就可得到一组线和线的交点,这些交点的连线就形成了I曲线。
三、叙述题(选择其中4道题,计20分)
1写出计算汽车动力因数的详细步骤,并说明其在计算汽车动力性的用途。
根据公式,求出不同转速和档位对应的车速,并根据传动系效率、传动系速比求出驱动力,根据车速求出空气阻力,然后求出动力因素,将不同档位和车速下的绘制在-直角坐标系中,并将滚动阻力系数也绘制到坐标系中,就制成动力特性图。利用动力特性图就可求出汽车的动力性评价指标:最高车速、最大爬坡度(汽车最大爬坡度和直接档最大爬坡度)和加速能力(加速时间或距离)。
2 分析变速器速比和档位数对汽车动力性的影响。
变速器速比增加,汽车的动力性提高,但一般燃料经济性下降;档位数增加有利于充分利用发动机的功率,使汽车的动力性提高,同时也使燃料经济性提高;但档位数增加使得变速器制造困难,一般可采用副变速器解决,或采用无级变速器。
3 如何根据发动机负荷特性计算等速行驶的燃料经济性?
发布评论