初中数学二元一次方程组的应用题型分类汇编——行程问题4(附答案)
1.一条船顺流航行每小时行40km,逆流航行每小时行32km,设该船在静水中的速度为每小时xkm,水流速度为每小时ykm,则可列方程组为______.
2.某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了路程____________千米.
3.甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则列出关于x、y的方程组是_____.
4.某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为u1, u2表示),请你根据下面的示意图,求电车每隔__________分钟(用t表示)从车站开出一部.
5.一列火车通过某铁路桥时,从上桥到过完桥共用30 s,而整列火车在桥上的时间为20 s,若火车速度为20 m/s,则铁路桥长为______ m,火车长为______ m.
6.一艘轮船顺流航行时,每小时行32km;逆流航行时,每小时行28km,则轮船在静水中的速度是每小时行___________km.(轮船在静水中的速度大于水流速度)
7.一次越野跑中,当小明跑了1000米时,小刚跑了800米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为___米。
8.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的__倍.9.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的
甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x=_____分钟.
10.轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度
是.
11.一辆快车和一辆慢车相距400千米,如果它同时相向而行,2小时后可以相遇;如果两车同时同向而行(快车追慢车),6小时后快车还落后慢车160千米,求快车、慢车的速度.
12.一支部队第一天行军4h,第二天行军5h,两天共行军98KM,且第一天比第二天少走2KM,第一天和第二天行军的平均速度各是多少?
13.甲、乙两人沿400m的环形跑道同时同地出发跑步.如果同向而行,那么经过200s 两人相遇;如果背向而行,那么经过40s两人相遇.若设甲的跑步速度为x m/s,乙的跑步
),求x,y的值.
速度y m/s(x y
14.小丽沿公路匀速前进,每隔4分钟就遇到一辆迎面而来的公共汽车,而每隔6分钟就会有一辆公共汽车从背后超过她.假定汽车速度不变,而且同一方向行驶的公共汽车相邻两车的距离都是1200米,求小丽前进的速度和公共汽车的速度,公共汽车每隔几分钟发一班车.
15.某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.
16.甲、乙两人从相距34km的两地相向而行,甲先走2h后乙再出发,在乙出发2h后两人相遇;若乙先走9.5km,则在甲出发2.5h后两人相遇.求甲、乙两人的速度. 17.某物流公司的快递车和货车每天往返于A,B两地,快递车比货车多往返一趟.下图是表示快递车距离A地的路程y(单位:千米)与快递车出发时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后又用了2小时装卸货物,然后按原路、原速返回,结果比快递车最后一趟返回A地晚1小时.
(1)请在图中画出货车距离A地的路程y(千米)与快递车出发时间x(小时)的函
(2)两车同时返回A地之前,求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时?
18.为方便市民出行,减轻城市中心交通压力,贵阳市地铁1号线于2018年12月1号正式全线开通.地铁开通后,李明爸爸妈妈的出行方式将由乘公交车改为乘坐地铁,爸爸从国际生态会议中心站出发至喷水池站,每天所需的时间将比以往节省70%;妈妈从国际生态会议中心站出发至珠江路站,每天所需的时间将比以往节省55%,这样两人所需的时间共节省60%,现在两人乘地铁所需的时间之和为1.2小时.请问李明爸爸妈妈原来乘公交车上班时每天所需时间各为多少小时?
19.甲、乙、丙3人,甲每分钟行60米,乙每分钟行67.5米,丙每分钟行75米,如果甲乙二人在东村,丙在东西村,他们3人同时由两村相向而行,丙遇到乙后,继续行走10分钟才遇到甲。东西两村相距多小米?
20.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时内把一批抗洪物质从物质局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物质局仓库离水库有多远?
21.张翔上午7:30出发,从学校骑自行车去县城,路程全长20km,中途因道路施工步行一段路.他步行的平均速度是5km/h
(1)若张翔骑车的平均速度是15km/h,当天上午9:00到达县城,则他骑车与步行各用多少时间?
(2)若张翔必须在当天上午9:00之前赶到县城,他的步行平均速度不变,则他骑车的平均
速度应在什么范围内?
22.某人要在规定时间内由A城市开车到B城市,如果每小时行驶35,那么要比规定时间迟2h到达;如果每小时行驶50,那么就能提前1h到达.求A,B两城市间的距离和规定时间.
23.从小华家到姥姥家的路由一段上坡路和一段下坡路组成.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3km,下坡每小时行5km,他到姥姥家需要66分钟,从姥姥家回来时需要78分钟才能到家那么从小华家到姥姥家的上坡路和下坡路各有多少千米?
24.沿河县城为了规范出租车收费,起步价为5元,两位乘客分别乘出租车走了10km和14km,车费分别为17元和25元,且一路顺利,没有停车等候,你能算出出租车起步价所允许行驶的最远路程吗?超过起步路程但行驶不到15km时,超过部分每千米车费
25.甲、乙两地火车线路比汽车线路长30千米,汽车从甲地先开出,速度为40千米/时,开出半小时后,火车也从甲地开出,速度为60千米/时,结果汽车仅比火车晚1小时到达乙地,求甲、乙两地的火车与汽车线路长.
26.一辆汽车从A地驶往B地,前1
3
路段为普通公路,其余路段为高速公路.已知汽车
在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A 地到B地一共行驶了2.2h.
请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.
27.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求两人的速度. 28.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?
29.滴滴快车是一种便捷的出行工具,计价规则如下表:
小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同.
()1求这两辆滴滴快车的实际行车时间相差多少分钟;
()2实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.
30.甲、乙两个同学从A地到B地,甲步行的速度为3千米/小时,乙步行的速度是5千米/小时,两人骑车的速度都是15千米/小时.现在甲先步行,乙先骑自行车,两人同时从A地出发,走了一段路程后,乙放下自行车步行,甲到乙放自行车的地方处改骑自行车.后面不断这样交替进行,两人恰好同时到达B地.那么,甲走全程的平均速度是多少?
参考答案
1.4032
x y x y +=⎧⎨-=⎩ 【解析】
【分析】
设该船在静水中的速度为每小时xkm ,水流速度为每小时ykm ,根据该船顺流速度=船在静水中的速度+水流速度,逆流速度=船在静水中的速度-水流速度,即可得出关于x 、y 的二元一次方程组.
【详解】
解:设该船在静水中的速度为每小时xkm ,水流速度为每小时ykm ,
根据题意得:4032
x y x y +=⎧⎨-=⎩ 故答案为4032x y x y +=⎧⎨
-=⎩
城市越野汽车. 【点睛】
本题考查了由实际问题抽象出二元一次方程组,准等量关系,正确列出二元一次方程组是解题的关键.
2.20
【解析】
【分析】
设平路有x 千米,上坡路有y 千米,根据平路用时+上坡用时+下坡用时+平路用时=5,即可得解.注意求得x+y 的值即为总路程.
【详解】
设平路有x 千米,上坡路有y 千米,根据题意,得: 4x +3y +6y +4x =5,即2x +2
y =5,则x +y =10(千米), 这5小时共走的路程=2×
10=20(千米). 故答案是:20.
【点睛】
考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,出合适的等量关系,列出方程.注意可以通过间接方式得解.