汽车隔热棉
3。1. 风道系统设计需考虑的因素
在汽车风道系统设计时,要保证将其制冷和采暖设备的出风均匀地送入车厢内.在满足该使用效果的前提下,尽可能地做到结构简单,制造方便,与车内内饰设计及附件相协调。风道系统设计时,需考虑以下因素:
1. 必须考虑车身总布置设计、内饰造型设计以及底盘设计中和风道设计相关的情况;
3。 要考虑风道各支管路之间的风量平衡,各支管路之间的空气流动的压力损失差值不得超过15%,并要详细计算各支管路的沿程阻力损失;
4. 必须将风道的气流噪声控制在允许的范围内,因此要对风道的风速进行控制。通常出风口风速控制在6。5~11m/s,新风入口处风速5~6m/s,主风道风速5。5~8m/s,支风道风速4~5.5m/s,过滤器风速1~1.5m/s;
5. 风道不能有大的泄漏点,以保证空调系统功能的发挥;
6。 对风道要进行隔热保温处理,以减少空气在风道输送过程中的冷、热量损失,并防止低温风道表面结露。常用的保温材料有聚苯乙烯泡沫塑料、玻璃棉、聚氨脂泡沫塑料等,为了防止火灾,车外风道最好用泡沫石棉隔热,并用石棉布包扎;
3.2. 风道中的压力损失
由于汽车车室内部的空气流动受有限的车厢空间的限制,汽车空调风道的压力损失问题较为严重,风道压力损失是由沿程压力损失和局部压力损失两部分组成。
3.2。1。 风道沿程压力损失
风道沿程压力损失是空气沿风道管壁流动时,由空气与管壁之间的摩擦、空气分子与分子之间的摩擦而产生。
风道单位长度的沿程压力损失pm(又称比摩阻)的计算式如下:
式中:λ——摩擦阻力系数;
ν——风道内空气的平均速度(m/s);
RS——风道的水力半径(m);
RS=A/P;
A -—风道的过流横截面面积(m2);
P --风道的周长(m);
摩擦阻力系数λ是雷诺数Re和管壁粗糙度n的函数。若空气流动呈层流状态时(Re<2300),λ值与管壁表面粗糙度无关,只与Re有关,即
λ=64/Re
当空气呈紊流状态时(Re>2300),有三种状态:
⑴当层流边界层覆盖住管壁凸起高度时,为水力光滑管,此时影响λ值的只有Re,即
⑵当层流边界层只是覆盖住管壁一部分凸起高度,而另一部分凸起高度在边界层外时,为过渡状态,此时λ既与Re有关,又与管壁粗糙度有关。
⑶如果层流边界层很薄,管壁凸起高度完全突出在边界层外部,属于水力粗糙管,λ只与管壁表面粗糙度有关而与Re无关。
但是对于大部分风道而言,空气的流动处在紊流过渡区,λ值既与Re有关,又与管壁表面粗糙度n有关,λ值与Re和n的关系可参阅一般空调设计手册和管道设计手册中的有关图表.
风道内空气的平均速度ν对风道沿程压力损失的影响最大,如果在相同风量时,风道中风速选得过大,虽然可减小风道的尺寸,但同时也会使风道内空气流动的沿程阻力以速度的平方值增加,而且还需要配置高压风机来满足风道出口风速的要求;反之,在相同的风量条件下,把空气速度选得过小,虽然风道阻力损失减小,但同时使风道尺寸过大,造成安装不方便,风道在车厢里所占空间过多。为此,空调汽车风道的风速应控制在如表3。1所示的低速风道送风范围内:
表3。1 低速风道推荐风速
空调系统风量(m3/h) | 风速(m/s) | ||
新空气风道 | 主风道 | 分支风道 | |
〈800 | 〈5 | 6~10 | 2~4 |
800~8000 | 7~15 | 8~14 | 4~8 |
8000~25000 | 12~18 | 10~16 | 4~8 |
风道摩擦阻力系数λ和单位长度的沿程压力损失pm也可采用如下的简化计算式计算:
①风道材料为薄钢板,风道内壁表面各凸出部分的平均高度为0。15mm时,
;
D——圆形风道内径或风道当量直径(m);
适用范围:0.2m≤D≤2m; 3 m/s≤ν≤20m/s;
②风道材料为塑料板或玻璃钢,风道内壁表面各凸出部分的平均高度(绝对粗糙度)为1mm时,
;
D—-圆形风道内径或风道当量直径(m);
适用范围:0。2m≤D≤2m; 5 m/s≤ν≤30m/s;
要降低风道沿程压力损失,就要求风道内表面光滑平整,以降低风道表面的绝对粗糙度,从而减小摩擦阻力。
3.2.2。 风道的局部压力损失
局部压力损失是由于空气在风道中的流量、流动方向或速度骤然突变时,会在风道内发生涡流或速度的重新分布,从而使流动阻力大大增加,造成能量损失。例如当空气流过三通管、四通管等部件时,因流量改变而产生的局部阻力损失;当空气流过弯管、渐扩管、渐缩管、风门等部件时因气流速度或方向改变而产生的局部阻力损失。
不论哪类局部构件,其所引起的局部阻力损失均可根据下式计算:
—-局部阻力系数,其取值根据相应的风道截面气流速度查阅有关的工程手册;
设计风道时,为了减小局部阻力,通常采取如下技术措施:
① 避免风道截面突变
风道截面突然扩大,会使部分气流因流速的变化而脱离扩管的壁面,在扩大截面处产生涡流,形成局部阻力损失。因此,在风道布置长度允许的条件下,应采用渐扩或渐缩管道,使局部阻力损失和噪音减小。一般渐扩管中心角≤14°,渐缩管中心角〈40°为宜(如图3.1)。
图3.1 风道截面突变角度
② 风道应尽量减少转弯
由于空气流过弯管时,气流主流会因流向突变而脱离管壁表面,使局部区域出现真空,气流会在局部区域回旋,造成能量损失,而且产生噪音。为了减小转弯处的局部阻力系数,可以减小转弯处的曲率半径和减少弯管过渡的节数。矩形风道的弯头,除了减小曲率半径之外,还可在弯头内部设置导流板来减小局部阻力系数。
在处理竖直风管与车内纵向风管的接头时,两者截面应尽量接近,并尽可能地增大90°弯头的圆角半径,若增设导流板,风阻可明显减小(如图3.2a)。在紧靠弯头的后面气流还未稳定(如图3。2b),不宜设置出风口,如果必须设置出风口,应在弯头或风口处加导流板。
发布评论