固态电池优点主要体现在安全性和能量密度提升上,使用锂金属负极显著提升能量密度,可将现有300Wh/kg的能量密度提升至500Wh/kg。而固态电池可抑制锂枝晶的生长,使锂金属负极运用成为可能,同时降低非活性物质,可以省去冷却系统,也能够提升能量密度。全固态电池不含电解液,安全性较高。固态电池缺点是固固界面容易接触不良,固态电池生产成本比较高,产业化尚远。固态电池主要技术路线分为三类,聚合物材料生产工艺接近现有设备,氧化物导电率高于聚合物,但固固接触不良,硫化物离子导电率最高,是全固态电池未来最可能的技术路线,但离子产品成本/价格非常高、空气稳定性较差。产业化进度方面,中日韩欧美共53家企业布局研发固态电池,其中9家专注硫化物固态电池。中国氧化物固态电池技术全球领先,龙头台湾辉能、江苏清陶、北京卫蓝、赣锋锂业已有产品商用;美国初创公司中Solid Power预计固态电池上市2021年,装车时间2026年,QuantumScape主打1000Wh/L以上、380-500Wh/kg的高能量密度;日本举全国之力,联合丰田、松下等公司和高校发展硫化物固态电池,预计2025、2030硫化物全固态电池在日本动力电池市场的渗透率分别达50%、95%以上;韩国三星已经开发出60摄氏度下1000多循环的硫化物全固态电池。固
态电池会完全取代电解液和隔膜,但正负极活性材料还是保持原有材料体系,到全固态技术下可能电池制备工艺会有大的改进,但对充换电不会有大影响。当前固态电池在安全性、能量密度、工作温度范围、倍率性能、循环寿命等各类指标全方位优于当前液态电池,定位也是全方位取代锂离子电池,只待成本降低。
一、固态电池优缺点
固态电池最重要的优点是安全性和能量密度提升。
①能量密度提升角度
锂离子电池能量密度主要是由正负极的材料体系决定的,现有正负极材料体系的限制下,锂离子电池包的极限能量密度难以达到要求。如果希望提高能量密度,需要更换正负极材料,比如负极用上锂金属,而锂金属负极很容易产生锂枝晶,引发起火风险。固态电池可抑制锂枝晶的生长,使锂金属负极运用成为可能,降低非活性物质,可以省去冷却系统,也能够提升能量密度。
以松下18650电池为例,1991年索尼第一次推进锂电池
商业化后,锂电池能量密度在75Wh/kg,现在量产的能量密度为275-300 Wh/kg。第一代的日产leaf、特斯拉roadster等车型的电池能量密度在100-200Wh/kg,正负极材料体系为钴酸锂+石墨或磷酸铁锂+石墨;第二代车型如特斯拉model s和宝马i3能量密度基本在200-250Wh/kg,续航有提升,正负极材料体系为高镍三元+石墨或中镍三元+石墨;第三代电动车续航里程500km以上,对应能量密度300 Wh/kg、600Wh/L,20分钟完成充放电,工作温度零下40度到80度,循环寿命3000次以上,对应使用寿命10年,度电成本0.1美元。固态电池是目前唯一能够满足以上多重指标的电池。在现有的正负极材料体系下
300Wh/kg是比较高的能量密度,但是用上锂金属负极能达到500Wh/kg以上。使用固态电池能够使当前体积利用率从20%-50%的体积利用率提升到80-100%的体积利用率。
②安全性(根本性优点)
固态电池以电解液用量为判断标准。常规锂电池电解液含量一般超过15%,固液共存电池国内很多企业已经在做,也有龙头企业如北京卫蓝、江苏清陶、赣锋锂业、台湾辉能的固态电池电解液含量10%-11%,已经实现产业化,有些已经中试。全固态电池完全没有电解液,主要是安全性比较高,
当前锂电池的有机溶剂接触空气后有可燃风险。
③低温性能
由于不用电解液,因此固态电池材料不会像液态电池随着降温结冰导致电池无法运作,理论上温区是更宽的。目前有展示全固态电池低温性能很好企业不多,QuantumScape 展示了零下40-零下80度其固态电池能够正常运作,但是这是他的广告词还有待考证。一般而言固态电池的低温和高温性能是优于现有液态电池的。
固态电池缺点:在电池循环的过程中,固固界面容易接触不良,这也导致了固态电池量产难度加大,还不能像锂离子电池一样迅速产业化,像现在电导率最高的固态电池材料硫化物体系和锂金属负极、氧化
物正极材料都不兼容稳定。另外,固态电池制备工艺是全新的,没有产业链,面对产业链上各环节的缺失,固态电池生产成本比较高,产业化还远未到来。
当前固液混合电池产品已经下线投放市场,预计3-5年这一批固液混合电池成本能够大幅降低,纯固态电池大概5-10年能够实现价格降低,当前包括QuantumScape等企业
均预计2025年实现硫化物全固态电池量产,成本会再消化1-2年再逐步下降。
特斯拉电池二、固态电池主要的技术路线及分类
目前全固态锂电池主要分为3种不同的技术路线,有机固态材料是聚合物,无机固态材料主要是氧化物和硫化物,研发历史都很悠久。聚合物最早1973年就有人对PEO开始研究,氧化物从1953年开始,从碳酸锂氧化物到1977年用LISICON(锗酸锌锂),1976-1988年用超快钠离子导体,2003年开始研究氧化物固态电池材料,主要是用锂镧钛氧,到2007年主要是用锂镧锆氧材料,目前比较流行的、用得多的材料主要是锂镧锆氧、LATP(磷酸钛铝锂)硫化物最早是1981-1991年玻璃向硫化锂和五硫化二锂的固态电池材料体系研究,1991年开始大家开始关注玻璃陶瓷向,2000年左右逐渐转向纯晶向固态电池材料,2001年第一个硫代超快锂离子导体,2.2毫西每厘米导锂水平。2011年和2016年日本一团队开发出的材料离子电导率分别达到12和25毫西每厘米,并且至今保持着世界记录。
聚合物全固态
发布评论