动力电池SOC和SOH估计是动力电池管理系统的核心功能之一,精确的SOC和SOH估计可以保障动力电池系统安全可靠地工作,优化动力电池系统,并为电动汽车的能量管理和安全管理等提供依据。然而,动力电池具有可测参数量有限且特性耦合、即用即衰、强时变、非线性等特征,车载环境应用又面临串并联成组非均一复杂系统、全工况(宽倍率充放电)、全气候(-30~45℃温度范围)应用需求,高精度、强鲁棒性的动力电池SOC和SOH估计极具挑战,一直是行业技术攻关的难点和国际学术界研究的前沿热点。本章将系统阐述动力电池SOC和SOH估计的基础理论和应用,并讨论静态容量已知和动态容量在线估计条件下动力电池SOC估计性能,以及SOH与SOC协同估计的必要性,并提供以便BMS现实应用的详细算法流程。
4.1 SOC估计
新能源汽车动力电池的SOC相当于普通燃油汽车的油表,SOC作为能量管理的重要决策因素之一,对于优化整车能量管理、提高动力电池容量和能量利用率、防止动力电池过充电和过放电、保障动力电池在使用过程中的安全性和长寿命等起着重要作用。本节将详细阐述动力电池静态容量已知情况下的SOC估计方法
4.1.1 SOC估计分类
动力电池结构复杂,电化学反应过程和反应阶段复杂且难以确定,而且车载工况恶劣、多变,作为隐性状态量的SOC精确值难以得到,常见的动力电池SOC估计方法大致可分为四类:基于表征参数的方法、安时积分法、基于模型的方法以及基于数据驱动的方法,如图4-1所示。
汽车油表怎么看
图4-1 SOC估计方法的分类
1.基于表征参数的方法
该方法主要分为两步:
①建立动力电池表征参数与SOC的离线关系。
②实时计算动力电池表征参数值,并以之标定动力电池SOC。
该方法的应用需满足两个前提:所建立表征参数与SOC的离线关系应该相对稳定,所选表征参数应该是易获取的。可选表征参数包括当前剩余容量、阻抗谱、OCV等。
当前剩余容量可通过放电实验法得到,该方法被认为是确定动力电池SOC最为直接的方法。但是新能源汽车在运行中难以进行长时间的恒流放电来确定剩余容量,使得该方法仅适用于实验室等特定环境。基于阻抗谱的方法则需要借助电化学工作站来测试动力电池不同SOC值的阻抗,并制定SOC和参数的映射关系,进而采用查表的方式完成SOC的标定。相对稳定的OCV-SOC关系常被工业界用来标定动力电池SOC,大量的BMS产品也使用这一关系来标定
动力电池初始SOC,但OCV的准确直接测量要求动力电池静置足够长的时间,因而在实际中往往需要与OCV在线辨识方法结合使用。