奥数第七讲   行程问题(一) ——追及问题
四年级奥数教案
第七讲  行程问题(一) ——追及问题
   
解决追及问题的基本关系式是:
路程差=速度差×追及时间
速度差=路程差÷追及时间;
追及时间=路程差÷速度差
在解决追及问题中,我们要抓住一个不变量,即追赶者所用时间与被追赶者所用的时间是相等的,都等于追及时间。大家还要注意区别“追及距离”与“追赶者追上被追赶者所走的距离”这两个量之间的区别。就像刚才的例子,“追及距离”为150米,而狗追上兔一共走了3×150=450(米)
二、新授课:
【例1】甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?
【思路分析】这道问题是典型的追及问题,求追及时间,根据追及问题的公式:
追及时间=路程差÷速度差
            150÷(75-60)=10(分钟)
答:10分钟后乙追上甲。
【小结】提醒学生熟练掌握追及问题的三个公式。
【例2 骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?   
【思路分析】这道题目,是同时出发的同向而行的追及问题,要求其中某个速度,就必须先求出速度差,根据公式:速度差=路程差÷追及时间:
速度差:450÷3=150(千米) 自行车的速度: 150+60=210(千米)
答:骑自行车的人每分钟行210千米。
【小结】这道题目在于灵活运用追及问题的三个基本公式求其中任意三个量。
【例3】两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63    千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?
【思路分析】根据题意可知,第一辆汽车先行2小时后,第二辆汽车才出发,
画线段图分析:从图中可以看出第一辆行2小时的路程为两车的路程差,即54×2=108(千米),两车相差108米,第二辆车去追第一辆车,第二辆车去追第一辆车,第二辆车每小时比第一辆车每多行63-54=9(千米),即为速度差,用
追及时间=路程差÷速度差。
解:(1)两车路程差为:54×2=108(千米)
  2)第二辆车追上所用时间:108 ÷(63-54)=12(小时)
答:第二辆车追上第一辆车所用的时间为12小时。
【小结】这道追及问题是不同时的,要先算出追及路程。
【及时练习】
1、哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80米的速度先去学校,3分钟后,哥哥骑车以每分钟200米的速度也向学校骑去,那么哥哥几分钟追上弟弟?
2、妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?
三、课堂小结:
追及问题的基本公式:路程差=速度差×追及时间;
速度差=路程差÷追及时间;
追及时间=路程差÷速度差
四、作业:思维训练
五、课后反思:
第二课时
教学时间:
教学内容:环形跑道的追及问题
教学目标:掌握不同形式的追及问题的解题思路和基本规律
教学重点:通过图形分析追及问题
教学难点:准解决环形路程的追及问题的突破口
教学过程:
一、复习:追及问题的三个基本公式。
二、新授课:
【例4】 一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?
【分析与解】 当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
解:①甲乙的速度差:300-250=50(米) ②甲追上乙所用的时间:400÷50=8(分钟)答:经过8分钟两人相遇。
【及时练习】
两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?
【例5】在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶,问2小时内,甲追上乙多少次?
【分析与解】此题属于追及问题,首先明确路程差和速度差,开始甲、乙在圆径的两端,其路程差为圆周长的一半,400÷2=200(米),当甲追上乙后,如果再想追上乙必须比乙多行圆的一周的路程,即一周400米为路程差,根据不同的路程差,我们可以求出甲追上乙一次,所用的时间,在总时间中去掉第一次的追及时间再看剩下的时间里包含几个“甲追上乙所用的时间”就可以求出2小时内甲追上乙的次数。
解:2小时=120分  甲第一次追上乙所用的时间:
400÷2÷(60-50)=20(分)                       
甲第二次开始每追乙一次所用的时间:
400÷(60-50)=40(分)
甲从第二次开始追上乙多少次:
(120-20)÷40=2次……20秒
甲共追上乙多少次:2+1=3(次)
答:甲共追上乙3次。
【小结】这类环形跑道的追及问题一定要明确路程差和速度差。
【及时练习】在周长为300米得圆形跑道一条直径的两端,甲、乙两人分别以每秒7米,每秒5米的骑车速度同时顺时针方向行驶,20分钟内甲追上乙几次?
 
【例6】在480米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分钟20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度? 
同向行驶,甲乙相遇,说明甲必须比乙多跑一圈,即400米才能与乙相遇,400米正好是两人的路程差,除以甲追赶乙所用的3分20秒,可知甲、乙的速度差。
背向行驶,甲、乙相遇,说明甲、乙必须合走一圈即400米,400米正好上两人的路程总和除以40秒相遇时间,可知甲、乙的速度和。
这样已知甲、乙的速度和及速度差,可将此题转化或和差关系的应用题,这样可求出甲、乙的速度分别是多少?
解:3分20秒=200秒
甲、    乙的速度和:400÷40=10(米)
甲、    乙的速度差:400÷200=2(米)
甲的速度为每秒多少米?(10+2)÷2=6(米)
乙的速度为每秒多少米?(10-2)÷2=4(米)
答:甲的速度为每秒6米,乙的速度为每秒4米。
【小结】这类题目是相遇问题和追及问题的结合,以及和差问题的综合运用。
【及时练习】甲、乙两地相距450米,AB两人从两地同时相向而行,经过5分钟相遇,已知A每分钟比B 每分钟慢6米,求AB两车的速度各是多少米?
三、课后练习:
反向而行
同向而行
1、一圆形跑道周长300米,甲、乙两人分别从AB两端同时出发,若反向而行1分钟相遇,若同向而行5分钟,甲可追上乙,求甲、乙两人的速度。 
2、甲、乙两人在环形跑道上练长跑,两人从同一地点同时同向出发,已知甲每秒跑6米,乙每秒跑4米,经过20分钟两人共同相遇6次,问这个跑道多长?
3、甲、乙两人环绕周长400米的跑道跑,如果他们从同一地点背向而行,经过2分钟相遇,如果从同一地点同向而行,经过20分钟甲追上乙,求甲、乙两人每分钟的速度各是多少?
四、课后反思:
第三课时
教学时间:
教学内容:追及问题
教学目标:掌握复杂的追及问题
教学重点:
教学难点:
教学过程:
一、新授课:
【例7】 一支队伍长350米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队头,然后再返回队尾,一共要用多少分钟?
分析 要求一共要多少分钟,必须先求出从队尾赶到队头要多少分钟,再求出从队头到队尾要用多少分钟,把这两个时间相加即可。
【分析与解】
解:①赶上队头所需要时间:350÷(3-2)=350(秒) ②返回队尾所需时间:350÷(3+2)=70(秒) ③一共用多少分钟?350+70=420(秒)=7(分)
答:一共要用7分钟。
【及时练习】一支队伍长450米,以每秒3米的速度前进,一个通讯员骑车以匀速从队尾赶到队头用了50秒。如果他再返回队尾,还需要多少秒?
行圆汽车大全【例8】 某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米。李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用多少秒?
【分析与解】 要求一共要用多少分钟,首先必须求出队伍的长度。
解:①这支路队伍长度:(202÷2-1)×0.5=50(米) ②赶上队头所需要时间:50÷(5-3)=25(秒) ③返回队尾所需时间:50÷(5+3)=6.25(秒) ④一共用的时间:25+6.25=31.25(秒)答:一共要用31.25秒。
【及时练习】
有966名解放军官兵排成6路纵队参加抗洪抢险。队伍行进速度是每秒3米,前后两排的间隔距离是1.2米。现有一通讯员从队头赶往队尾用了16秒钟。如果他再从队尾赶到队头送信还需要多少时间?
【例9】 甲、乙、丙三人从A地出发到B地。乙比丙晚出发10分钟,40分钟后追上丙;甲比乙晚出发20分钟,100分钟追上乙;甲出发多少分钟后追上丙?
 
设丙的速度为1米/分钟. (1)当乙追上丙时,丙共行了1×(40+10)=50米,由此可知乙行50米用了40分钟,乙的速度为50÷40=1.25(米/分钟); (2)当甲追乙时,乙已先出发走了20分钟,这时甲乙的距离差为1.25×20=25(米),甲乙的速度差为25÷100=0.25(米); 甲的速度为1.25+0.25=1.5(米); (3) 当甲追丙时,丙已经先出发走了10+20=30分钟,这时甲丙的距离1×(10+20)=30米,速度差为1.5-1=0.5(米/分钟),追及时间为30÷0.5=60(分钟)。
【及时练习】
小明、小峰和小光三人都从甲地到乙地,早上6时小明、小峰两人一起从甲地出发,小明每小时走5千米,小峰每小时走4千米,小光上午8时从甲地出发,傍晚6时,小光、小明同时到达乙地。小光什么时候追上小峰?
 三、课后练习 
1、甲乙两人在周长400米的环形跑道上竞走,已知乙的速度是平均每分钟80米,甲的速度是乙的1.25倍,甲在乙前100米,问多少分钟后,甲可以追上乙?
2、一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距多少千米?
3、自行车队出发12分钟后,通讯员骑摩托车去追他们,在距离出发点9千米处追上了自行车队。然后,通讯员立刻返回出发点,随后又返回去追上了自行车队,再追上时恰好离出发点18千米,试求自行车队和摩托车的速度。
 四、课后反思:
 
第四课时
教学内容:追击问题的练习题
教学目标:掌握各种类型的追击问题相遇问题
教学重点:会熟练解决基本的追击问题
教学难点:会解决复杂的追击问题
【例10】两艘渡船从南岸开往北岸,第一艘以每小时30千米的速度先开,第二艘渡船晚12分钟,速度为每小时40千米,结果两船同时到达,求南北两岸相距多少千米?
第一艘
【分析与解】根据题意画图:
要求南北岸的距离可用第一艘的速度乘以第一艘船所用的时间,或是用第二艘船的速度乘以第二艘船所用的时间。这两种时间等于追及时间,所以归为追及问题。
第五课时
教学内容:追击问题的练习题
教学目标:掌握各种类型的追击问题相遇问题
教学重点:会熟练解决基本的追击问题
教学难点:会解决复杂的追击问题
教学过程:
1、甲、乙两地相距54千米,AB两人同时从两地相向而行,A每小时行4千米,B每小时行5千米,两人经过几小时相遇?
2、甲、乙两人同时从学校向相反方向行驶,甲每分钟行52千米,乙每分钟行50千米,经过7分钟后他们相距多少米?他们各自离学校有多少米?
3、甲、乙两地相距480米,客车和货车同时从两地相向而行,经过5小时相遇,客车的速度是每小时50千米,求货车的速度是每小时多少千米?
4、小明和小红两人从相距2280米的两地相向而行,小明每分钟行60米,小红每分钟行80米,小明出发3分钟后小红才出发,小红出发几小时后与小明相遇?相遇时两人各行了多少米?
5、一列火车于下午430分从甲站开出,每小时行120千米,经过1小时后,另一辆火车以同样的速度从乙站开出,晚上930分两车相遇,问甲、乙两站铁路长多少千米?
6AB两地相距360千米,客车和货车从AB两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点离B地多远?
7、甲、乙两车从AB两地同时相向而行,甲车每小时行40千米,乙车每小时行35千米,两车在距中点15千米处相遇,求AB两地相距是多少?
8、甲、乙两人同时从两地骑车相向而行,甲每小时行18千米,乙每小时行15千米,两人相遇距离中点3千米,起两地距离多少千米?
9AB两地相900千米,甲、乙两人同时从AB,甲每分钟行70米,乙每分钟行50米,当甲到达B后立即返回与乙在途中相遇,两人从出发到相遇共经过多少分钟?
10、学生甲和乙同时住一楼,有一次他们同时从家到相距540米的学校上学,甲每分钟行60米,乙每分钟行48米,甲到达学校后发现忘带文具盒,立即返回家去取,在途中遇到乙,那么从开始上学到两人相遇共用几分钟?
11、甲、乙两人从相距1800米的两地同时相向而行,甲每分钟行80米,乙每分钟行70米,乙带了一只小狗与他们同时行驶,狗以每分钟220米的速度向甲跑去,狗遇到甲时已行了多少米?狗遇到甲后立刻回头向乙跑去,这样狗在甲、乙两人之间来回奔跑,直到两人相遇为止,这只狗一共跑了多少米?
12、一辆客车与一辆货车同时从AB两地相对开出,经过6小时相遇,相遇后两车都以原速继续前进,又经过4小时客车到达B地,这时货车离A地还有188千米,AB两地相距多少千米?
13、小玲和小明家相距600米,这天两人同时从家出发向对方家走去,小玲走完全程需要12分钟,小明走完全程需要20分钟,相遇时两人各走了多少米?
14AB两地相距460千米,甲列车同时从A地开出2小时后,乙列车从B地开出,经过4小时与甲列车相遇,已知甲列车比乙列车每小时多行10千米,问甲列车平均每小时行多少千米?
15、甲、乙两人在相距90米的路上来回跑步,甲的速度是每秒钟3米,乙的速度是每秒种2米,如果他们同时分别从支炉两端出发,跑了10分钟,那么在这段时间内共相遇几次?