2021年第3期
2021No.3
Automobile Technology &Material
46MnVS5材料连杆应用研究
万文华
邓向阳
(中天钢铁集团有限公司,常州213011)
摘要:为保证46MnVS5胀断连杆材料质量,对其成分及工艺设计进行研究分析。通过合理设计Mn 、Si 等固溶强化元素及V 、Nb 、N 等沉淀强化元素含量,优化炼钢工艺、提高元素控制稳定性,材料的强度得到稳定提高;通过采用二火轧制及高温扩散加热工艺,材料的成分更趋均匀、性能更趋稳定;锻造过程采用合适的加热温度和合理的冷却速率控制金相组织,材料的强韧性指标得到了进一步提高。本研究所得到的高强度胀断连杆毛坯锻件完全能满足用户的使用要求。
关键词:胀断连杆强度
珠光体
铁素体
锻件
中图分类号:TB31
文献标识码:B
DOI:10.19710/Jki.1003-8817.20200392
Research on Application of 46MnVS5in Connecting Rod
Wan Wenhua,Deng Xiangyang
(Zenith Steel Group Co.,Ltd.,Changzhou 213011)
Abstract :The composition and producing process of 46MnVS5are studied to meet the fracture splitting
connecting rod material requirements.The strength of the material has been improved by rationally designing solid solution strengthening elements such as Mn and Si and precipitation strengthening trace elements such as V,Nb,and N,and accurately controlling the smelting process.The composition of the material becomes more uniform and the material performance is more stable through the use of two-fire rolling and high-temperature diffusion heating technology.The obdurability is improved by adopting appropriate heating temperature and cooling rate during forging process,to further increase the material's toughness index.The obtained high-strength fracture-splitting connecting rod rough forgings can fully meet the customer requirements.
Key words:Fracture splitting connecting rod,Strength,Pearlite,Ferrite,Forgings
作者简介:万文华(1970—),男,高级工程师,学士学位,研究方向为高品质特殊钢技术质量研究与管理。参考文献引用格式参考文献引用格式::
万文华,邓向阳.46MnVS5材料连杆应用研究[J].汽车工艺与材料,2021(3):20-24.
WAN W,DENG X.Research on Application of 46MnVS5Material in Connecting Rod [J].Automobile Technology &Material ,2021(3):20-24.
1前言
传统的发动机连杆材料为40Cr 、42CrMo 等合
金结构钢,使用前需要经过淬火+回火的热处理工序,热处理过程能耗高、环境污染严重;此外,该类钢加工工艺复杂,尺寸精度差[1-2]。为了降低能耗,提高生产效率,从而降低生产成本,无需热处理工序的非调质钢材料得到了广泛运用。与调质钢材料相比,非调质钢材料加工连杆省去了热处理工序并采用胀断技术,绿环保、低成本,且尺寸精
度高。
当前应用较为广泛的胀断连杆用非调质钢为C70S6高碳类钢,近来为了满足高强度、高爆发力的大功率发动机连杆要求,更高强度、更高疲劳性能等级的非调质钢材料也得到了快速发展,如46MnVS5等。46MnVS5材料虽然综合性能优于C70S6,但是生产制造难度加大,主要是随着其合金含量的增多(如V 、Mn 等)奥氏体稳定性增加,在随后的轧制与锻造过程易出现异常组织,最终会影响连杆的胀断及使用性能,因此迫切需要解决
视界
万文华等:46MnVS5材料连杆应用研究
这一难点问题。
2用户对性能指标的相关要求
为满足汽车不断轻量化的需求,对发动机连
杆等运动件的强度、塑性等性能指标提出了越来越高的要求,46MnVS5胀断连杆用非调质钢材料的具体要求见表1。
3
胀断连杆用高强度非调质钢46MnVS5
应用研究
3.1
成分设计
为满足胀断连杆材料高强度的要求,将46Mn⁃VS5的化学元素成分进行研究,Mn 和Si 质量分数控制在中上限,起到固溶强化的作用;C 质量分数也控制在中上限以提高材料的强度与脆断性能;添加一定质量分数的V 、Nb 、N 元素,使得V 、Nb 与C 、N 结合的化合物具有沉淀强化的作用,并能明显细化材料的晶粒度[3]。具体化学成分见表2。
3.2冷却曲线的测定
为制定合理的轧制、锻造及冷却等工艺参数,
对46MnVS5的连续冷却转变(Continuous Cooling Transformation ,CCT )曲线进行测定,采用的仪器为DIL805L 热膨胀仪,加热方式为真空高频感应
加热,将试样以5℃/s 加热到900℃,保温10min 后分别以0.3℃/s 、0.5℃/s 、0.7℃/s 、1.0℃/s 、2.0℃/s 、3.5℃/s 、5.0℃/s 、10.0℃/s 、20.0℃/s 、40.0℃/s 、60.0℃/s 的速率降温至室温,得到45M
nVS5钢的热膨胀数据。根据热膨胀原始数据中长度变化转折处的温度,将不同冷却速度下的相变温度连接起来得到46MnVS5钢的静态CCT 曲线如图1所示。
结合图2所示的腐蚀金相,从46MnVS5钢的静态CCT 曲线来看,可以得到以下结论。
a.在冷却速度0.3~60℃/s 的温度范围,钢依次发生了铁素体、珠光体、贝氏体和马氏体的组织转变。
b.冷却速度小于0.5℃/s 时,试样的室温组织为铁素体和珠光体。钢从高温状态冷却时,先共析铁素体优先沿奥氏体晶界析出,同时碳向周围扩散,冷却速度越高,碳扩散速度越慢,铁素体珠光体分布状态也更加均匀。
c.当冷却速度为1.0~3.5℃/s 时,发生了珠光体和贝氏体转变,此时组织为铁素体、珠光体和贝氏体。随着冷却速度的增加,贝氏体含量逐渐增加,铁素体和珠光体减少。
d.当冷却速度为5.0℃/s 时,珠光体转变消失,此时组织为铁素体、贝氏体和马氏体。
e.冷却速度继续增加时,
马氏体和贝氏体含量
项目
度R el 度R m 长率缩率硬度比例
晶粒度
(杆部)
项目项目图146MnVS5连续冷却曲线
图2
不同冷却速率下金相组织
(a )0.3℃/s
1
10
100
100010000
时间/s
900700500300100-100
温度/℃
A =803℃A =751℃
F
P B
M
冷速/(℃/s )60402015107.553.52
10.50.3
20μm
20μm
汽车连杆(b )2℃/s
(c )5℃/s
(d )10℃/s
20μm 20μm
·
·21
第3期汽车工艺与材料
继续增加,同时组织更加细化。CCT曲线显示结果可知,46MnVS5钢的连续冷却经过了4个相变区,即高温铁素体、珠光体转变区,中温贝氏体转变区和低温马氏体转变区。
因此为防止冷却过程出现贝氏体、马氏体等异常组织,并抑制先共析铁素体析出,得到细片状的珠光体[4-5],采用0.3~0.5℃/s的冷却速率比较合理。4胀断连杆用非调质钢及其锻件生产工艺研究
4.1生产工艺流程
120t转炉冶炼→LF炉精炼→RH真空炉处理→大断面连铸机浇注→初轧机组开坯→连轧机组轧制→轧材探伤精整→连杆毛坯锻造。
4.2冶炼过程成分的精确控制
为保证46MnVS5具有均匀的成分和稳定的力学性能,需进行化学成分的精确控制,要求成分尽量按照目标值控制。具体措施为稳定控制装入转炉的铁水和废钢质量,对钢包进行称重,从而对出钢量进行准确计算。LF炉精炼前期加强造渣与脱氧,降低钢水氧含量,从而提高Mn、Si等易氧化元素的收得率;RH真空处理过程采用氮气作为提升气体,以防止RH过程氮元素出现比较大的损失。
4.3轧制工艺的试验
该非调质钢采用二火轧制,采用大断面的连铸坯,最终轧制圆钢尺寸为Φ35~Φ42mm,从而提高轧制压缩比,提高材料致密性。工艺包括加热炉加热、开坯轧制、中间坯精整、中间坯加热、二火轧制、冷却、无损探伤,轧制步骤如下。
a.加热炉加热。大断面连铸坯开坯加热采用高温扩散加热工艺,提高加热温度并显著延长加热时间尤其是高温段加热时间,以便对C、P、S、Mn 等易偏析元素进行充分均匀化扩散,从而保证材料性能的一致性。
b.开坯轧制。提高开轧温度及终轧温度,控制锯切温度,得到160mm×160mm断面轧坯,轧后对轧坯进行避风堆冷。
c.轧坯精整。为控制轧材最终的脱碳层深度并提高材料的表面质量,对轧坯表面进行剥皮,并进行倒角处理。
d.第二火加热。160mm×160mm断面轧坯采用低温加热工艺,在目前工艺基础上适当降低加热温度并缩短二火加热时间,在该条件下才能达到控制圆钢表面脱碳层深度的作用。
e.第二火轧制。采用控轧控冷工艺降低开轧温度及终轧温度;轧后采用穿水冷却,降低圆钢上冷床温度,通过控轧控冷工艺的有效实施提高了轧材表面质量并得到细晶粒组织。轧材下线后进行避风堆冷,以防止出现异常组织。
4.4连杆锻造工艺的试验
a.下料后圆钢采用感应加热方式,加热温度1 200~1230℃,此温度既能保证V、Nb等强化元素能够充分固溶析出,起到沉淀强化的作用,从而提高材料的强度,又可以防止加热温度过高造成晶粒粗大,影响材料的使用性能[6-7];
b.加热后进行锻造,控制终锻温度900~950℃,锻造成连杆毛坯;
c.控制冷却,锻造结束后在风冷线上进行冷却,通过调节风冷却速度度0.3~0.5℃/S,控制下风冷线温度580~620℃,然后将毛坯放入料框中进行避风堆冷,通过合适的冷却得到优良的细片状珠光体加铁素体组织,防止出现贝氏体及马氏体非平衡状态的异常组织,实际控制铁素体比例≤20%。
5试验结果和分析
通过对成分的精确控制、轧钢及锻造工艺参数的合理优化后,46MnVS5的检测结果如下。5.1原材料力学等性能检测
热轧圆钢经过1100℃正火后,保温45min,再空冷,然后检测其力学性能如下表3所示。
5.2原材料疲劳寿命检测
连杆材料46MnVS5
钢的疲劳试验在液压伺服项目
最大值
最小值
均值
强度R el
879
846
861
度R m
1093
1059
1074
长率
17.5
15.0
16.5
缩率
39.0
34.0
36.0
体比
15.3
7.8
11.2
晶粒度
8.0
7.5
8.0
硬度
306
295
298
··22
视界6结论
a.通过对Mn 、Si 等固溶强化元素的合理设计,
添加V 、Nb 、N 等微量元素利用其沉淀强化作用来提高材料的强韧性,同时在冶炼过程对元素成分进行精准控制,来提高材料性能的稳定性。
b.采用二火材轧制工艺,并通过轧钢过程的高温扩散加热工艺,来减轻C 、P 、S 元素偏析,达到均匀组织从而均匀性能的目的。
c.通过CCT 连续冷却曲线的测定,为制定轧制、锻造后的冷却工艺提供了依据,通过采用合理的冷却速度,既避免了贝氏体、马氏体非平衡组织的出现,又抑制了先共析铁素体的析出,得到细片状的珠光体组织,从而提高了材料的强韧性。
d.连杆产品的疲劳性能试验结果表明,
46MnVS5非调质钢连杆的疲劳寿命满足产品要求。
参考文献:
[1]谭利.铁素体—珠光体型非调质钢应用技术研究[D].昆明:昆明理工大学,2013.
[2]刘智雄.胀断连杆用新型中碳非调质钢的研究[D].昆明:昆明理工大学,2010.
[3]李晓辉.中碳非调质连杆胀断缺陷与Nb 微合金化研究[D].青海:青海大学,2018.
[4]巫宇峰.钒微合金化中碳非调质钢组织转变及强化机疲劳试验机上进行,采用拉压对称加载,并将成组法疲劳测试的试验数据以log N (N 为循环周次)为x 轴,试验应力为y 轴绘制于图3中,根据数据点近似拟合出46MnVS5钢拉压交变载荷下的S -N 曲线。用升降法求疲劳极限,试验结果,46MnVS5钢材试样的疲劳极限为530MPa ,满足设计要求。
5.3连杆锻件金相组织检测
连杆锻件不同部位的金相组织如图4所示。
5.4
连杆产品的疲劳性能试验
本次连杆疲劳强度试验按某1.4t 连杆总成在MTS370液压伺服疲劳试验机上进行。平均负荷(静负荷)为-11.3kN ,交变负荷采用4个级别,36kN 、46kN 、56kN 、61kN ,循环基数1000万次,正弦波加载,见图5。
采用对比法评价连杆产品的安全系数。用户要求在-11.3±36kN 负荷下通过1000万次循环即满足安全系数要求。试验结果,46MnVS5材料连杆,在-11.3±36kN 的负荷下,3件试样通过了1000万次循环,满足用户要求。
从上述检测结果可以看出非调质钢的强韧性指标良好,锻造后的连杆组织均匀,且无贝氏体马氏体等异常组织出现,疲劳强度较高。轧材低倍、表面质量、尺寸公差、探伤合格率等指标均好于技术条件要求。
万文华等:46MnVS5材料连杆应用研究
图346MnVS5非调质钢S -N 曲线
4.0
4.5
5.0
5.5
6.0
6.5
7.0
Log N 750700650600550500
试验应力/M P a 1
图4
锻造后连杆组织
图5
正弦波加载示意
(a )小头组织(b )大头组织(c )杆部组织
50μm 50μm 50μm
P max
P 0
P min
载荷
时间
(+)(-)
·
·23
第3期汽车工艺与材料
制研究[D].昆明:昆明理工大学,2016.
[5]钟芳华,纪仁峰,钟凡,等.胀断连杆用中碳非调质钢的
连续冷却转变[J].南方金属,2018(2):29-32. [6]何沂桂,满廷慧,谭利,等.锻造工艺对铌-钒微合金非
调质钢显微组织的影响[J].机械工程材料,2015,39(1):
29-32+38.
[7]巩清华.胀断连杆锻造工艺解析[J].锻造与冲压,2016 (23):
55-57.
中国汽车工程学会涂装技术分会2021年汽车涂装技术交流会论文征集通知
中国汽车工程学会涂装技术分会主办的“2021年汽车涂装技术交流会”将于2021年10月在天津召开。两年一届的汽车涂装盛会,是我国汽车行业在涂装技术领域进行技术交流,促进新材料、新工艺、新技术的重要平台。会议将以“节能、环保、降成本,促进汽车清洁涂装生产技术发展”为主题。竭诚欢迎涂装专业的各位委员,从事汽车、摩托车制造及相关工业领域的涂装技术人员,关心中国汽车涂装技术进步的国内外友好人士投稿。
入选论文将编入大会论文集,同时安排优秀论文在会议上宣讲,并推荐在《汽车工艺与材料》、《现代涂料与涂装》等杂志发表。
1论文范围
a.汽车涂装新材料、新工艺、新设备及其发展趋势。
b.汽车涂装环保、节能、降成本技术及应用。
c.汽车涂装材料及涂层检测技术及应用。
d.汽车涂装生产管理技术及应用。
e.其它相关技术及应用。
2论文格式要求
采用A4幅面复印纸排版打印,上下左右的页
边距均为30mm。字体及字号要求如下:
论文题目(三号宋体加粗)
作者姓名(作者所在单位名称)(五号宋体)
〖摘要〗300字以内(5号楷体)
××××××××××××(正文5号宋体)
小标题(小4号黑体加粗)
要求文章没有发表过,且主题明确,逻辑严谨,文字精炼,图像清楚(若引用外文数据或图表必须翻译成中文),格式规范。要求专题论述论文不能超过2500字,综述性论文不能超过3500字。3论文提交时间
征文截止日期为2021年5月15日,论文请发至以下邮箱:
********************;联系人:高成勇(电话:139****3498)。
中国汽车工程学会涂装技术分会
2020年11月3日
图表可用小5号或6号字
··24
发布评论