响应时间lt 10ms
现代汽车正由一个单纯交通工具朝着能满足人类需求和安全、舒适、方便及无污染的方向发展。
要实现这些目标的关键在于汽车的电子化和智能化,先决条件则是各种信息的及时获取,这势必要求在汽车中大量采用各种传感器。传统的传感器往往体积和重量大、成本高,它们在汽车的应用受到很大的限制。
近几年来,从半导体集成电路(IC)技术发展而来的微机电系统(microelectromechnicalsystem,MEMS)技术日渐成熟。微型传感器是目前最为成功并最具实用性的微型机电器件,主要包括利用微型膜片的机械形变产生电信号输出的微型压力传感器和微型加速度传感器;此外,还有微型温度传感器、磁场传感器、气体传感器等,这些微型传感器的面积大多在1mm2以下。随着微电子加工技术,特别是纳米加工技术的进一步发展,传感器技术还将从微型传感器进化到纳米传感器。这些体积小,可实现许多全新的功能,便于大批量和高精度生产,单件成本低,易构成大规模和多功能阵列,这些特点使得它们非常适合于汽车方面的应用。
汽车用传感器分类
汽车用传感器是用于汽车显示和电控系统的各种传感器的统称。它涉及到很多的物理量传感器和化学量传
感器。这些传感器要么是使司机了解汽车各部分状态的;要么是用于控制汽车各部分状态的。按在汽车上的作用可分为控制发动机、控制底盘以及给驾驶员提供各种信息用传感器,构成这些传感器的材料有精细陶瓷、半导体材料、光导纤维及高分子薄膜等;按输出特性来分有模拟型传感器和数字型传感器;按构成原理来分,有结构型、韧性型和复合型。为方便起见,现按汽车传感器的控制对象来分类。
微型传感器在汽车中的应用
汽车上用的传感器的种类很多,应用的方面很广。下面介绍传感器在汽车
发动机控制、安全系统、车辆监控和自诊断等方面的应用。
(一)汽车发动机控制用传感器
发动机的电子控制一直被认为是MEMS技术在汽车中的主要应用领域之一。发动机控制系统用传感器是整个汽车传感器的核心,种类很多,包括温度传感器、压力传感器、位置和转速传感器、流量传感器、气体浓度传感器和爆震传
感器等。这些传感器向发动机的电子控制单元提供发动机的工作状况信息,供
电子控制单元对发动机工作状况进行精确控制,以提高发动机的动力性、降低
油耗、减少废气排放和进行故障检测。
1.温度传感器
汽车用温度传感器主要用于检测发动机温度、吸人气体温度、冷却水温度、燃油温度以及催化温度等。温度传感器有热敏电阻式、线绕电阻式和热偶电阻
式三种主要类型。这三种类型传感器各有特点,其应用场合也略有区别。热敏
电阻式温度传感器灵敏度高、响应特性较好,但线性差、适应温度较低。其中,通用型的测温范围为-50℃~30℃,精度为1.5%,响应时间为10ms;高温型为600℃~1000℃,精度为5%,响应时间为10ms;线绕电阻式温度传感器的精度高,但响应特性差;热偶电阻式温度传感器的精度高,测量温度范围宽,但需
要配合放大器和冷端处理一起使用。其他已实用化的产品有铁氧体式温度传感
器(测温范围为-40℃~120℃,精度为2.0%)、金属或半导体膜空气温度传感
器(测温范围为-40℃~150℃,精度为2.0%,5%,响应时间约20ms)等。
2.压力传感器
压力传感器是汽车中用得最多的传感器,主要用于检测气囊贮气压力、传
动系统流体压力、注入燃料压力、发动机机油压力、进气管道压力、空气过滤
系统的流体压力等。目前,致力于汽车用压力传感器开发和生产的主要公司有
摩托罗拉,德科电子仪器,LucasNovasensor,HiStat,NipponDenzo,西门子,德州仪器等。
比较常用的汽车压力传感器有电容式、压阻式、差动变压器式、声表面波式。电容式压力传感器主要用于检测负压、液压、气压,测量范围为20kPa~100kPa,其特点是输入能量高,动态响应特性好、环境适应性好;压阻式压力
传感器的性能则受温度影响较大,需要另设温度补偿电路,但适应于大批量生产;差动变压器式压力传感器有较大的输出,易于数字输出,但抗干扰性差;
声表面波式压力传感器具有体积小、质量轻、功耗低、可靠性高、灵敏度高、
分辨力高、数字输出等特点,用于汽车吸气阀压力检测,能在高温下稳定地工作。
德国Infineon公司研制的智能轮胎压力传感器KP500内部集成了压力和温度传感模块,它不需要在传感器模块中增加加速度传感器,可以在汽车启动时
自动开机进人自检,能测量压力、温度和电压等。所有的功能都是利用表面微
机械加工技术集成在0.8μm的双极互补金属氧化物半导体(BiCMOS)上。每个传感器模块中的电可擦可编程只读存储器中存储着惟一的32位芯片识别码,。芯片识别码可以由同步串行接口读出,而且,可以用于辨识各个轮胎压力传感
器的位置。在接收数据的时候,首先,要检查芯片识别码,如果发现芯片识别码不符,就放弃收到的数据帧。
3.流量传感器
流量传感器主要用于发动机空气流量和燃料流量的测量。进气量是燃油喷射量计算的基本参数之一。空气流量传感器的功能:感知空气流量的大小,并转换成电信号传输给发动机的电子控制单元。空气流量的测量用于发动机控制系统确定燃烧条件、控制空燃比、起动、点火等。空气流量传感器有旋转翼片式、卡门涡旋式、热线式、热膜式等4种类型。空气流量传感器的主要技术指标:工作范围为0.11m3/min~103m3/min,工作温度为-40℃~120℃,精度>1%。燃料流量传感器用于检测燃料流量,主要有水轮式和循环球式,其动态范围为0~60kg/h,工作温度为-40℃~120℃,精度为±1%,响应时间<10ms。
Honeywell的下属微开关(microswitch)公司用热微细加工技术制作出了微桥式空气流量传感器芯片,它用微细加工技术在硅圆片上加工出空腔,铂电阻悬挂在空腔之上。当空气流过器件时,,发生了从空气流动方向下方到上方的热传输,因而,下方电阻被冷却,上方电阻被加热,由电桥电阻变化可测量出空气流量。
4.位置和转速传感器
曲轴位置与转速传感器主要用于检测发动机曲轴转角、发动机转速、节气门的开度、车速等,为点火时刻和喷油时刻提供参考点信号,同时,提供发动机转速信号。目前,汽车使用的位置和转速传感器主要有交流发电机式、磁阻
式、霍尔效应式、开关式、光学式、半导体磁性晶体管式等,其测量范围
为0°~360°,精度优于±0.5°,,测弯曲角达±0.1°。
车速传感器种类繁多,有敏感车轮旋转的、也有敏感动力传动轴转动的,
还有敏感差速从动轴转动的。当车速高于100km/h时,一般测量方法误差较大,需采用非接触式光电速度传感器,测速范围为0.5km/h~250km/h,重复精度为0.1%,距离测量误差优于为0.3%。汽车压力传感器
5.气体浓度传感器
气体浓度传感器主要用于检测车体内气体和废气排放。其中,最主要的是
氧传感器,它检测汽车尾气中的氧含量,根据排气中的氧浓度测定空燃比,向
微机控制装置发出反馈信号,以控制空燃比收敛于理论值。常用的有氧化锗传
感器(使用温度为-40℃~900℃,精度为1%)、氧化铬浓差电池型气体传感器(使用温度为300℃~800℃)、固体电解质式氧化铬气体传感器(使用温度为0~400℃,精度为0.5%),另外,还有二氧化钦氧传感器以及二氧化错氧传感器,。和氧化锗传感器相比,二氧化钛氧传感器具有结构简单、轻巧、便宜,
且抗铅污染能力强的特点。二氧化锆微离子传感器由氧化钙稳定氧化错离子体、多孔铂厚膜工作电极、钯/氧化把厚膜参数电极、不透水层、电极接触和保护层构成。其中,氧化钙稳定氧化错由反应溅射法积淀。工作电极和参考电极都由
厚膜工艺制作。在理想的A/F点附近的输出电压发生骤变,当空燃比变高,废
气中的氧浓度增加时,氧传感器的输出电压减小;当空燃比变低,废气中的氧
浓度降低时,氧传感器的输出电压增大。电子控制单元识别这一突变信号,对
喷油量进行修正,从而相应地调节空燃比,使其在理想空燃比附近变动。
6.爆震传感器