齿轮传动系统机构分析及方案优化
一·课题的目的及意义(含国内外的研究现状分析)
课题研究的目的
培养我们材料力学·理论力学,机械原理·机械设计,优化设计,CAE,科学计算等课程的综合应用能力,使我们在资料检索,英文翻译等方面获得综合训练,从系统的角度培养学生分析问题和解决问题的能力,为缩短工作适应期奠定坚实的基础。
国内外相关现状及发展趋势
“有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和 算法都已经日趋完善。有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分 析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。
<br> 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途 径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶, 铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:
<br> 增加产品和工程的可靠性;
<br> 在产品的设计阶段发现潜在的问题
<br> 经过分析计算,采用优化设计方案,降低原材料成本
<br> 缩短产品投向市场的时间
<br> 模拟试验方案,减少试验次数,从而减少试验经费
<br>
<br> 国际上早在60年代初就开始投入大量的人力和物力开发有限元分析程序,但真正的C
AE软件是诞生于70年代初期,而近15年则是CAE软件商品化的发展阶 段,CAE开发商为满足市场需求和适应计算机硬、软件技术的迅速发展,在大力推销其软件产品的同时,对软件的功能、性能,用户界面和前、后处理能力,都进 行了大幅度的改进与扩充。这就使得目前市场上知名的CAE软件,在功能、性能、易用性、可靠性以及对运行环境的适应性方面,基本上满足了用户的当前需求, 从而帮助用户解决了成千上万个工程实际问题,同时也为科学技术的发展和工程应用做出了不可磨灭的贡献。目前流行的CAE分析软件主要有NASTRAN、 ADINA 、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。MSC-NASTRAN软件因为和NASA的特殊关系,在航空航天领域有着很高 的地位,它以最早期的主要用于航空航天方面的线性有限元分析系统为基础,兼并了PDA公司的PATRAN,又在以冲击、接触为特长的DYNA3D的基础上 组织开发了DYTRAN。近来又兼并了非线性分析软件MARC,成为目前世界上规模最大的有限元分析系统。ANSYS软件致力于耦合场的分析计算,能够进 行结构、流体、热、电磁四种场的计算,已博得了世界上数千家用户的钟爱。ADINA非线性有限元分析软件由著名的有限元专家、麻省理工学院的 K.J.Bathe教授领导开发,其单一系统即可进行结构、流体、热的耦合计算。并同时具有隐式和显式两种时间积分算法。由于其在非线性求解、流固耦合分 析等方面的强大功能,迅速成为有限元分析软件的后起之秀,现已成为非线性分析计算的首选软件。
<br>
<br> 纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:
<br>
<br> 1、与CAD软件的无缝集成
<br> 当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限 元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。为了满足工程师快捷地解 决复杂工程问题的要求,许多商业化有限元分析软件都开发了和著名的CAD软件(例如Pro/ENGINEER、Unigraphics、 SolidEdge、SolidWorks、IDEAS、Bentley和AutoCAD等)的接口。有些CAE软件为了实现和CAD软件的无缝集成而采 用了CAD的建模技术,如ADINA软件由于采用了基于Parasolid内核的实体建模技术,能和以Parasolid为核心的CAD软件(如 Unigraphics、SolidEdge、SolidWorks)实现真正无缝的双向数据交换。
<br>
<br> 2、更为强大的网格处理能力
<br> 有限元法求解问题的基本过程主要包括:分析对象的离散化、有限元求解、计算结果的后处理三部分。由于结构离散后的网格质量直接影响到求解时间及求解结果的 正确性与否,近年来各软件开发商都加大了其在网格处理方面的投入,使网格生成的质量和效率都有了很大的提高,但在有些方面却一直没有得到改进,如对三维实 体模型进行自动六面体网格划分和根据求解结果对模型进行自适应网格划分,除了个别商业软件做得较好外,大多数分析软件仍然没有此功能。自动六面体网格划分 是指对三维实体模型程序能自动的划分出六面体网格单元,现在大多数软件都能采用映射、拖拉、扫略等功能生成六面体单元,但这些功能都只能对简单规则模型适 用,对于复杂的三维模型则只能采用自动四面体网格划分技术生成四面体单元。对于四面体单元,如果不使用中间节点,在很多问题中将会产生不正确的结果,如果 使用中间节点将会引起求解时间、收敛速度等方面的一系列问题,因此人们迫切的希望自动六面体网格功能的出现。自适应性网格划分是指在现有网格基础上,根据 有限元计算结果估计计算误差、重新划分网格和再计算的一个循环过程。对于许多工程实际问题,在
整个求解过程中,模型的某些区域将会产生很大的应变,引起单 元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要 条件。
<br>
<br> 3、由求解线性问题发展到求解非线性问题
<br> 随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求 解,例如薄板成形就要求同时考虑结构的大位移、大应变(几何非线性)和塑性(材料非线性);而对塑料、橡胶、陶瓷、混凝土及岩土等材料进行分析或需考虑材 料的塑性、蠕变效应时则必须考虑材料非线性。众所周知,非线性问题的求解是很复杂的,它不仅涉及到很多专门的数学问题,还必须掌握一定的理论知识和求解技 巧,学习起来也较为困难。为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,如ADINA、ABAQUS等。它们的共同特点是具有高效的非 线性求解器、丰富而实用的非线性材料库,ADINA还同时具有隐式和显式两种时间积分方法。
<br>
<br> 4、由单一结构场求解发展到耦合场问题的求解
<br> 有限元分析方法最早应用于航空航天领域,主要用来求解线性结构问题,实践证明这是一种非常有效的数值分析方法。而且从理论上也已经证明,只要用于离散求解 对象的单元足够小,所得的解就可足够逼近于精确值。现在用于求解结构线性问题的有限元方法和软件已经比较成熟,发展方向是结构非线性、流体动力学和耦合场 问题的求解。例如由于摩擦接触而产生的热问题,金属成形时由于塑性功而产生的热问题,需要结构场和温度场的有限元分析结果交叉迭代求解,即"热力耦合"的 问题。当流体在弯管中流动时,流体压力会使弯管产生变形,而管的变形又反过来影响到流体的流动……这就需要对结构场和流场的有限元分析结果交叉迭代求解, 即所谓"流固耦合"的问题。由于有限元的应用越来越深入,人们关注的问题越来越复杂,耦合场的求解必定成为CAE软件的发展方向。
<br>
<br> 5、程序面向用户的开放性
<br> 随着商业化的提高,各软件开发商为了扩大自己的市场份额,满足用户的需求,在软件的功能、易用性等方面花费了大量的投资,但由于用户的要求千差万别,不管 他们怎样努力也不可能满足所有用户的要求,因此必须给用户一个开放的环境,允许用户根据自己的实际情况对软件进行扩充,包括用户自定义单元特性、用户自定 义材料本构(结构本构、热本构、流体本构)、用户自定义流场边界条件、用户自定义结构断裂判据和裂纹扩展规律等等。
<br>
<br> 关注有限元的理论发展,采用最先进的算法技术,扩充软件的能,提高软件性能以满足用户不断增长的需求,是CAE软件开发商的主攻目标,也是其产品持续占有市场,求得生存和发展的根本
二·课题任务 重点研究内容 实现途径 条件
1 确定某一个二级减速器的传动方案
2掌握其工作原理
3对减速器进行受力分析并计算尺寸
4学习有限元软件,利用软件对减速器受力分析
具体做法
1 借一本最简单的有关有限元方法的书,了解基本概念,对照PATRAN&NASTRAN的教程做几个简单的例子,下载几篇类似的论文,看看别人怎么做的。
2 试着做齿轮的静力分析(齿轮简化为圆盘、齿轮轴简化为圆柱,逐步过渡到有真实轮齿的结构);
3 再对齿轮箱箱体结构做结构分析,先分析简单的箱体,逐步过渡到真实的箱体,最后对减速器整体进行静力分析(两人分别以董、叶二位同学所画的结构为分析对象);
汽车传动系统4 分析结构的模态(振动固有频率),结合减速器已知的参数:转速、传递功率、转矩等,验证结构是否满足要求(如满足要求,有多大的安全系数,是否还可以优化:更换材料,对某些地方减轻重量等)。
5 撰写分析报告,按最后确定的结构方案,画工程图。
工作条件
电脑 工具书 有限元软件 SolidWorks
进度安排
2012.2.12~2012.3.30 课题的确定,完成外文翻译,文献综述的资料搜索;
2012.3.31~2012.4.06 完成文献综述,开题报告的撰写为中期检查作好准备;
2012.4.7~2012.04.13 接受学院和学校的中期检查,对提出的意见对其进行修改对结构进行有限元建模分析,确定正确的分析程序。提交初步的分析结论,通过修改部分参数对结构初步优化,最后确定优化后的结构方案;
2012.4.14~2012.5.18 按照确定的优化后的结构方案,绘制工程图并完成分析报告和毕业论文的撰写。
2012.5.19~2012.5.31 完成毕业设计最后的工作,对毕业论文进行修改,毕业答辩
发布评论