汽车底部复杂流场的主动和被动控制减阻方法研究
袁志;杨明智;张炳荣
【摘 要】针对汽车底部复杂流场结构存在的问题及其对汽车燃油经济性的影响,以降低气动阻力为目标,采用计算流体动力学方法研究了侧风工况下汽车底部复杂流场的主动和被动控制减阻方法,设计了阻流板、侧裙、底部抽吸控制槽和尾部气流喷射控制槽4种减阻方案,分析了各方案对气动阻力的影响和减阻机理.研究结果表明,减阻效果与横摆角、阻流板高度、侧裙高度、底部控制槽抽吸速度和尾部控制槽气流喷射的速度与角度有关,4种减阻方案的气动阻力最大降幅分别为9.4%,10.4%,13.5%和4.7%.在实际使用过程中,宜根据汽车运行环境采用动态控制方法,以达到最优减阻效果.汽车模型风洞实验验证了本文中数值计算方法的准确性,研究结果可为汽车设计提供参考.
【期刊名称】《汽车工程》
【年(卷),期】2019(041)005
【总页数】9页(P537-544,555)
【关键词】气动阻力;阻流板;侧裙;底部抽吸控制槽;尾部气流喷射控制槽;动态控制方法
【作 者】袁志;杨明智;张炳荣
【作者单位】厦门理工学院机械与汽车工程学院,厦门361024;中南大学,轨道交通安全教育部重点实验室,长沙410075;福建省客车及特种车辆研发协同创新中心,厦门361024;中南大学,轨道交通安全教育部重点实验室,长沙410075;厦门理工学院机械与汽车工程学院,厦门361024;福建省客车及特种车辆研发协同创新中心,厦门361024
【正文语种】中 文
前言
随着高速公路的飞速发展,汽车行驶速度越来越高,空气动力学对燃油经济性的影响日趋突显,现今降低气动阻力、提高汽车燃油经济性已备受汽车行业普遍关注。汽车底部结构十分复杂,排气管、悬架、备胎、油箱和传动轴等零部件直接裸露在空气中。当汽车高速行驶时,这些零部件会被高速气流直接冲击,导致底部流场结构复杂产生许多分离漩涡[1-2],不仅自身气动阻力增加,而且会影响汽车尾部流场,导致车身气动阻力增加。因此有
效控制和引导汽车底部流场对降低整车气动阻力至关重要。
降低汽车气动阻力的方法主要有被动控制减阻和主动控制减阻两种。被动控制减阻通过改变车身局部形状和加装气动附加装置,如密封盖板和非光滑表面等方法[1,3-7],从而改变近车体气流流动状态、延缓气流分离,实现气动阻力降低,是目前比较常见的一种减阻方法,且应用广泛,但整体成本会大幅增加;主动控制减阻则与之相反,它对流场的控制是实时、动态的,主要有可调节尾翼、射流技术和主动进气隔栅等[8-12],但目前鲜有研究。此外,汽车运行环境复杂,裸露在空气中的汽车底部结构还会受到侧风的影响而进一步加剧底部流场的紊流度,目前对于侧风工况下的汽车底部流场主被动控制减阻方法研究很少。在文献[13]和文献[14]的研究基础上,针对汽车底部复杂流场导致的气动阻力过大问题,本文中分别采用被动控制和主动控制减阻方法,提出汽车在侧风环境行驶时合理可行的减阻方案,研究结果可为汽车设计提供理论参考。
1 计算模型的建立与验证
采用UG NX软件分别建立前阻流板和侧裙的被动控制减阻方案,如图1所示。它一方面可减少进入底部气流流量,另一方面可避免高速气流直接冲击底部凹凸部件,阻流板高度H1和侧
裙高度H2分别在0~80 mm之间变化,两者形状与整车造型融为一体。
图1 被动控制减阻方案示意图
为抑制底部紊乱气流及其对汽车尾流的影响,分别在车底前部和车尾后部设置控制槽,采用主动吹吸方法控制底部气流流动,如图2所示。对车底前部控制槽采取主动抽吸的方式,减少进入底部气流量,控制汽车前端流场;对车尾后部控制槽,采用气流喷射的方式,控制底部气流对尾涡结构的影响。两种控制槽的宽度B1和B2均为10 mm,控制槽整体形状与车身造型融为一体,控制槽气流速度v C1和v C2在0~60 m/s区间变化。主被动控制减阻方案的底部结构与实际车型一致,改进前后整车造型保持一致。
图2 主动控制减阻方案示意图
计算域采用长方体,如图3所示。正面入口和侧面入口距离车身分别为3倍车长和3倍车宽;正面出口和侧面出口距离车身分别为7倍车长和7倍车宽,保证湍流能够充分发展;顶面距离车身4倍车高;当横摆角β在0°~30°之间变化时,阻塞比均小于2%,能有效消除洞壁干扰,保证计算结果的准确性。
图3 边界条件设置示意图
计算分析采用ANSYS流体分析软件,首先在ICEM-CFD软件中对计算域进行离散,生成非结构化四面体网格,车身表面采用六层棱柱网格精确模拟边界层分布,满足壁面函数要求。为准确捕捉车底复杂流场及其对尾涡的影响,对车身底部和尾部进行体网格加密。采用不同的网格数量进行了网格无关性验证,被动控制减阻方案(阻流板高度H1为60 mm,横摆角β为0°)的不同网格划分方案计算结果如表1所示,进一步加密网格会导致计算效率降低,但计算精度提高不明显,因此本文中采用方案3的网格划分,各方案网格总体数量均在1 000万左右。
表1 不同网格划分方案结果对比方案 阻力系数 备注方案1 0.338 7 车身面网格32 mm,底部结构面网格16 mm,体网格加密256 mm。方案2 0.332 1 车身面网格32 mm,底部结构面网格16 mm,体网格加密128 mm。方案3 0.319 5 车身面网格16 mm,底部结构面网格8 mm,体网格加密64 mm。方案4 0.317 4 车身面网格16 mm,底部结构面网格8 mm,体网格加密32 mm。
侧风模拟方法主要有“偏车”和“偏风”两种[15-17],后者在保证精度的同时效率更高,因此
本文中采用车速与风速的合成速度施加在正面入口和侧面入口的“偏风”方法。入口合成风速为v=30 m/s,该计算工况的雷诺数大于临界值,横摆角β在0°~30°区间变化,间隔 3°;正面出口和侧面出口均采用压力出口边界条件,相对大气压力为0;地面为滑移壁面边界;车身为非滑移壁面边界。计算采用Realizable k-ε湍流模型,大量研究结论证明,对于雷诺时均N-S方程求解计算,该模型对气动力计算精度高,在边界层和分离流流动中流场捕捉准确[18-19]。
为验证本文中数值计算模型的有效性,对光滑底部结构的汽车模型在不同横摆角工况下的气动阻力进行风洞测试。该验证模型仅底部结构作平整处理,车身等其它部位结构与本文中数值计算模型保持一致,数值计算模型的边界条件与风洞实验的工况对应。气动阻力系数的对比结果如图4所示。由图可见,两者结果均较吻合,误差控制在5%以内,证明了本文中数值计算模型建立准确、计算方法可行。
2 计算结果
图4 数值计算结果与风洞实验结果对比
气动阻力对汽车燃油经济性至关重要,是评价汽车空气动力学性能的重要指标。本文中主要通过分析主动和被动控制方案前后汽车的气动阻力系数变化规律和底部与尾部流场变化,揭示其减阻机理。
汽车风洞图5为不同横摆角工况下,阻流板高度对气动阻力系数影响的部分结果。由图可见:阻流板高度保持一定时,气动阻力系数随着横摆角的增加总体上呈先增加后减小的趋势,这与前人研究结论一致;阻流板对气动阻力系数的影响规律不仅与自身高度相关,并且与横摆角大小有很大关系。当β≤6°时,气动阻力系数随着阻流板的高度增加而减小,变化趋势基本一致,在此范围内,气动阻力系数最大降幅出现在 β=3°、阻流板高度为 80 mm时,降幅为9.4%;当9°≤β≤18°时,气动阻力系数随着阻流板的高度增加呈先减小后增加的趋势,气动阻力系数最小值与横摆角大小有直接关系,在此范围内,气动阻力系数最大降幅出现在β=15°、阻流板高度为60 mm时,降幅为7.5%;但当β≥21°,阻流板对降低气动阻力系数没有促进作用,气动阻力系数随着阻流板高度的增加而增加。
图5 气动阻力系数随阻流板高度的变化关系
图6为不同横摆角工况下,侧裙高度对气动阻力系数影响的部分结果。由图可见:侧裙高度
保持一定时,气动阻力系数随着横摆角的增加总体上呈先增加后减小的趋势,与前述结论一致;当β≤18°时,侧裙高度变化对气动阻力影响不大,甚至会一定程度增加整车气动阻力系数;随着横摆角进一步增加,当β≥21°时,气动阻力系数随着侧裙高度的增加呈先减小后增加的趋势,在此范围内,气动阻力系数最大降幅出现在β=30°、侧裙高度为60 mm时,降幅为10.4%。
图6 气动阻力系数随侧裙高度的变化关系
为解决阻流板在大横摆角、侧裙在小横摆角工况下减阻存在的缺陷,提出阻流板和侧裙的组合减阻方案。根据以上分析结论,选取阻流板高度H1为80 mm、侧裙高度H2为60 mm的组合方案,分析组合方案在不同横摆角工况下的气动阻力系数变化规律,如图7所示。由图可见,组合减阻方案的气动阻力系数随横摆角的变化规律与原始方案一致,且优于单个减阻方案,当横摆角在0°~30°之间变化时,气动阻力系数降幅在6.1%~13.2%之间浮动。