二元一次方程组解应用题
列方程解应用题的基本关系量:
(1)行程问题速度×时间=路程   
(2)顺水速度=静水速度—水流速度  逆水速度=静水速度—水流速度
(3)工程问题:工作效率×工作时间=工作量
(4)浓度问题:溶液×浓度=溶质
(5)银行利率问题:免税利息=本金×利率×时间
二元一次方程组解决实际问题的基本步骤:
1、审题,搞清已知量和待求量,分析数量关系. ( 审题,寻等量关系)
2、考虑如何根据等量关系设元,列出方程组. (设未知数,列方程组)
3、列出方程组并求解,得到答案.              (解方程组)
4、检查和反思解题过程,检验答案的正确性以及是否符合题意. (检验,答)
列方程组解应用题的常见题型:
(1)电动小汽车和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量
(2)产品配套问题:加工总量成比例
(3)速度问题:速度×时间=路程
(4)航速问题:此类问题分为水中航速和风中航速两类
1.顺流(风):航速=静水(无风)中的速度+水(风)速
2.逆流(风):航速=静水(无风)中的速度--水(风)速
(5)工程问题:工作量=工作效率×工作时间
    一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题
(6)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量
(7)浓度问题:溶液×浓度=溶质
(8)银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率
(9)利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%
(10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量
(11)数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示
(12)几何问题:必须掌握几何图形的性质、周长、面积等计算公式
(13)年龄问题:抓住人与人的岁数是同时增长的
(分配调运问题)
1、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?
                             
(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?
(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?
                           
无锡二手车交易市场                     
(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。二人的平均速度各是多少? 
                       
(倍数问题)某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?
                       
(分配问题)某幼儿园分苹果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友?
                   
(浓度分配问题)要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?
解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克。  题中的两个相等关系 :
(金融分配问题)需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克?
(几何分配问题)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?
                       
(材料分配问题)一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?
                 
(和差倍问题)一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?
                   
             
(分配调运)一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨?
再探实际问题与二元一次方程组应用题检测
◆知能点分类训练
知能点1
1、班上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x人,女生人数为y人,则可列方程组为               
2、甲乙两数的和为10,其差为2,若设甲数为x,乙数为y,则可列方程组为         
3、已知方程y=kx+b的两组解是k=    b=   
4某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为                 
5、学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票科目三灯光考试口诀表x张,乙种票y张,则列方程组              ,方程组的解是       
6、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x米,另一段为y,那么列的二元一次方程组为       
7、一个矩形周长为20cm,且长比宽大2cm,则矩形的长为    cm,宽为       cm
8、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为    (        )   
9、一只轮船顺水速度为40千米/时,逆水速度为26千米/时,则船在静水的速度是
        _______ ,水流速度是            ____.
10、一辆汽车从A地出发,向东行驶,途中要过一座桥,使用相同的时间,如果车速是每小时60千米,就能越过桥2千米;如果车速是每小时50千米,就差3千米才能到桥,则A地与桥相距        _____千米,用了              小时.(考虑问题时,桥视为一点)
11、一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则宽和长分别为_____.
12、一批书分给一组学生,每人6本则少6本,每人5本则多5本,该组共有_____名学生,这批书共有_______本.
13、某年级有学生246人,其中男生比女生人数的2倍少3人,求男、女生各有多少人.设女生人数为x人,男生人数为y,则可列出方程组___            ____.
14、甲、乙两条绳共长17m,如果甲绳减去,乙绳增加1m,两条绳长相等,求甲、乙两条绳各长多少米.若设甲绳长x(m),乙绳长y(m),则可列方程组(  ).
15、已知长江比黄河长836km,黄河长度的6倍比长江长度的5倍多1 284km.设长江、黄河的长度分别为x(km),y(km),则可列出方程组                 
16、班上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x人,女生人数为y人,则可列方程组为               
17、甲乙两数的和为10,其差为2拉皮车是什么意思,若设甲数为x,乙数为y,则可列方程组为         
18、已知方程y=kx+b的两组解是则k=    b=   
19、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为                 
20、学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,则列方程组              沃尔沃总部 ,方程组的解是       
21、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x米,另一段为y,那么列的二元一次方程组为        德系车车祸
22、一个矩形周长为20cm,且长比宽大2cm,则矩形的长为    cm,宽为       cm
23、 七(2)班有任课教师6名,学生30名,其中男生占全班学生的60%,若画出该班全体师生人数的扇形统计图,男生所占的扇形的圆心角为      .
24、小利持250元钱到一超市购买一物品,发现每个物品上标价为2.5元/个,而在超市的促销广告上却标明:买这种物品达到100个以上(不包括100个售价为2.4元/个,小利用手中的钱最多可买    个这种物品.
25、某同学买80分邮票与一元邮票共花16元,已知买的一元邮票比80分邮票少2枚,设买80分邮票枚,则依题意得到方程为()
26、某种商品的进价为15元,出售时标价是22.5元。由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价_______元出售该商品。
27、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减20%以96元出售,很快就卖掉了。则这次生意盈亏情况是(        )
    A、赚6元        B、不亏不赚      C、亏4元        D、亏24元
28、班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔(        )
    A、20支          B、14支          C、13支          D、10支
29、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价。设这种服装的成本价为x元,则得到的方程是(        )
  A、=25%  B、150-x=25%  C、x=150×25%  D、25%·x =150
30、学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm,售价30分,大饼直径40cm,售价40分。你更愿意买__________饼,原因_____________