GPS 接收器测试
概览
从波音 747 客机的导航操作、汽车驾驶每天都会使用的 GPS 导航系统,到寻宝者要到深藏于森林某处的宝藏,GPS 技术已经迅速融入于多种应用中。正当创新技术不断提升 GPS 接收器效能的同时,相关的技术特性亦越来越完整。时至今日,软件甚至可建立 GPS 波形,以精确仿真实际的讯号。除此之外,仪器总线技术亦不断提升,目前即可透过 PXI 仪控功能,以记录并播放实时的 GPS 讯号。
介绍
由于 GPS 技术已于一般商用市场逐渐普及,因此多项设计均着眼于提升相关特性,如:
1) 降低耗电量
2) 可寻微弱的卫星讯号
3) 较快的撷取次数
4) 更精确的定位功能
透过此应用说明,将可了解进行多项 GPS 接收器量测的方法:敏感度、噪声系数、定位精确度、首次定位时间,与位置误差。此篇技术文件是要能让工程师彻底了解 GPS 的量测技术。对刚开始接触 GPS 接收器量测作业的工程师来说,可对常见的量测作业略知一二。若工程师已具有 GPS 量测的相关经验,亦可透过此篇技术文件初步了解新的仪控技术。此篇应用说明将分为下列数个段落:
GPS 技术的基础
GPS 量测系统
常见量测概述
敏感度
首次定位时间 (TTFF)
定位精确度与重复性
追踪精确度与重复性
每个段落均将提供数项实作秘诀与技巧。更重要的是,读者可将自己的结果与 GPS 接收器获得的结果
进行比较。透过自己的结果、接收器的结果,再搭配理论量测的结果,即可进一步检视自己的量测数据。
GPS 导航系统介绍
全球定位系统 (GPS) 为空间架构的无线电导航系统,本由美国空军所研发。虽然 GPS 原是开发做为军事定位系统之用,却也对民间产生重要影响。事实上,您目前就可能在车辆、船舶,甚至移动电话中使用 GPS 接收器。GPS 导航系统包含由 24 组卫星,均以 L1 与 L2 频带 (Band) 进行多重讯号的传输。透过 1.57542 GHz 的 L1 频带,各组卫星均产生 1.023 Mchips BPSK (二进制相位键移) 的展频讯号。展频序列则使用称为 C/A (coarse acquisition) 码的虚拟随机数 (PN) 序列。虽然展频序列为 1.023 Mchips,但实际的讯号数据传输率为 50 Hz [1]。在系统的原始布署作业中,一般 GPS 接收器可达 20 ~ 30 公尺以上的精确度误差。此种误差肇因于美国军方依安全理由所附加的随机频率误差所致。然而,此称为选择性可靠度 (Selective availability) 误差讯号源,已于 2000 年 5 月 2 日取消。在今天,接收器的最大误差不超过 5 公尺,而一般误差已降至 1 ~ 2 公尺。
不论是 L1 或 L2 (1.2276 GHz) 频带,GPS 卫星均会产生所谓的「P 码」附属讯号。此讯号为 10.23 Mbps BPSK 的调变讯号,亦使用 PN 序列做为展频码。军方即透过 P 码的传输,进行更精确的定位作业。在 L1 频带中,P 码是透过 C/A 码进行反相位 (Out of phase) 的 90 度传输,以确保可于相同载波上
测得此 2 种讯号码[2]。P 码于 L1 频带中可达 -163 dBW 的讯号功率;于 L2 频带中可达 -166 dBW。相对来说,若在地球表面的
C/A 码,则可于 L1 频带中达到最小 -160 dBW的广播功率。
GPS 导航讯号
针对 C/A 码来说,导航讯号是由数据的 25 个框架(Frame) 所构成,而每个框架则包含 1500 个位 [2]。此外,每组框架均可分为 5 组 300 个位的子框架。当接收器撷取 C/A 码时,将耗费 6 秒钟撷取 1 个子框架,亦即 1 个框架必须耗费 30 秒钟。请注意,其实某些较为深入的量测作业,才有可能真正花费 30 秒钟以撷取完整框架;我们将于稍后讨论之。事实上,30 秒钟仅为撷取完整框架的平均最短时间;系统的首次定位时间 (TTFF) 往往超过 30 秒钟。
为了进行定位作业,大多数的接收器均必须更新卫星星历 (Almanac) 与星历表 (Ephemeris) 的信息。该笔信息均包含于人造卫星所传输的讯号数据中,,而每个子框架亦包含专属的信息集。一般来说,我们可透过子框架的类别,进而辨识出其中所包含的信息 [2][7]:
Subframe 1: 包含时序修正 (Clock correction)、精确度,与人造卫星的运作情形
Subframes 2-3: 包含精确的轨道参数,可计算卫星的确实位置
Subframes 4-5: 包含粗略的卫星轨道数据、时序修正,与运作信息。
而接收器必须透过卫星星历与星历表的信息,才能够进行定位作业。一旦得到各组卫星的确实距离,则高阶GPS 接收器将透过简单的三角表达式 (Triangulation algorithm) 回传位置信息。事实上,若能整合虚拟距离(Pseudorange) 与卫星位置的信息,将可让接收器精确识别其位置。
不论是使用 C/A 码或 P 码,接收器均可追踪最多 4 组人造卫星,进行 3D 定位。追踪人造卫星的过程极为复杂,不过简单来说,即是接收器将透过每组卫星的距离,估算出自己的位置。由于讯号是以光速 (c),或为299,792,458 m/s 行进,因此接收器可透过下列等式计算出与人造卫星之间的距离,即称为「虚拟距离(Pseudorange)」:
等式 1.「虚拟距离 (Psedorange)」为时间间隔 (Time interval) 的函式 [1][4]
接收器必须将卫星所传送的讯号数据进行译码,才能够获得定位信息。每个卫星均针对其位置进行广播(Broadcasting),接收器跟着透过每组卫星之间的虚拟距离差异,以决定自己的确实位置 [8]。接收器所使用的三角量测法 (Triangulation),可由 3 组卫星进行 2D 定位;4 组卫星则可进行 3D 定位。
设定 GPS 量测系统
测试 GPS 接收器的主要产品,为 1 组可仿真 GPS 讯号的 RF 向量讯号产生器。在此应用说明中,读者
将可了解应如何使用 NI PXI-5671 与 NI PXIe-5672 RF 向量讯号产生器,以达到量测目的。此产品并可搭配 NI GPS 工具组,以模拟 1 ~ 12 组 GPS 人造卫星。
完整的 GPS 量测系统亦应包含多种不同配件,以达最佳效能。举例来说,外接的固定式衰减器 (Attenuator),可提升功率精确度与噪声层 (Noise floor) 的效能。此外,根据接收器是否支持其直接输入埠的 DC 偏压 (Bias),某些接收器亦可能需要 DC 阻绝器 (Blocker)。下图即为 GPS 讯号产生的完整系统:
图 1. GPS 产生系统的程序图
如图 1 所示,当测试 GPS 接收器时,往往采用最高 60 dB 的外接 RF 衰减 (留白,Padding)。固定式衰减器至少可提供量测系统 2 项优点。首先,固定式衰减器可确保测试激发的噪声层低于 -174 dBm/Hz 的热噪声层(Thermal noise floor)。其次,由于可透过高精确度 RF 功率计 (Power meter) 校准讯号准位,因此固定式衰减器亦可提升功率精确度。虽然仅需 20 dB 的衰减即可符合噪声层的要求,但若使用 60 ~ 70 dB 的衰减,则可达到更高的功率精确度与噪声层效能。稍后将接着讨论 RF 功率校准,而图 2 抢先说明衰减对噪声层效能所造成的影响。
表1. 不同衰减所需的仪器功率比较
如表1所示,衰减可用于减弱噪声,而不仅限于 -174 dBm/Hz 的热噪声层。
RF 向量讯号产生器
当选择 RF 向量讯号产生器时,NI LabVIEW GPS 工具组可同时支持 NI PXI-5671 与 NI PXIe-5672 RF 向量讯号产生器。虽然此 2 款适配卡可产生 GPS 讯号,但由于 PCI Express 总线速度较快,并可立刻进行 IF 等化(Equalization),因此 NI PXIe-5672 向量讯号产生器较受到青睐。此 2 款适配卡均具有 6 MB/s 总数据传输率与1.5 MS/s (IQ) 取样率,可从磁盘串流 GPS 波形。
虽然 PXI控制器硬盘可轻松维持此数据传输率,NI 仍建议使用外接磁盘进行额外的储存容量。下图为包含 NI PXIe-5672 的常见 PXI 系统:
图 2. 包含 NI PXIe 5672 VSG 与 NI PXI-5661 VSA 的 PXI 系统
GPS 工具组可于完整导航讯号期间,建立最长 12.5 分钟 (25 个框架) 的波形。依 6 MB/s 的取样率,则最大档案约为 7.5 GB。由于上述的波形档案尺寸,所有的波形均可储存于多款硬盘选项之一。这些波形储存资源选项包含:
PXI 控制器的硬盘 ( 推荐使用 120 GB 硬盘升级)
如 HDD 8263 与 HDD 8264 的外接 RAID 装置
外接 USB 2.0 硬盘 (已透过 Western Digital Passport 硬盘进行测试)
上述各种硬盘设定,均可支持超过 20 MB/s 的连续数据串流作业。因此,任何储存选项均可仿真 GPS 讯号,并进行记录与播放。在稍后的段落中,将说明仿真与记录 GPS 波形的整合作业,并进行 GPS 接收器效能的特性参数描述 (Characterization) 作业。
建立仿真的 GPS 讯号
由于 GPS 接收器是透过天线传输数据,并取得卫星星历与星历信息;当然,仿真的 GPS 讯号亦需要该项信息。卫星星历与星历信息,均透过文本文件表示,可提供卫星位置、卫星高度、机器状态,与绕行轨道的相关信息。
此外,在建立波形的过程中 M,亦必须选择客制参数,如星期时间 (TOW)、位置 (经度、纬度、高度),与仿真
的接收器速率。以此信息为基础,工具组将自动选择最多 12 组人造卫星、计算所有的都卜勒位移 (Doppler shift) 与虚拟距离 (Pseudorange) 信息,并接着产生所需的基频波形。为了可尽快入门,工具组安装程序亦包含范例
的卫星星历与星历档案。此外,更可由下列网站直接下载:
Almanac information (The Navigation Center of Excellence)/almanacs.htm
Ephemeris information (NASA Goddard Space Flight Center).gov/gnss_datasum.html#brdc
透过客制的卫星星历与星历档案,即可建立特定日期与时间的 GPS 讯号,甚至可回溯数年以前。请注意,当选择这些档案时,必须选择与日期相对应的档案。一般来说,卫星星历与星历信息为每日更新,因此当选择特定时间与日期时,亦应选择同 1 天的档案。下载的星历档案往往为压缩的「*.Z」格式。因此,在搭配使用 GPS 工
具组之前,档案必须先行解压缩。
只要使用工具组中的「自动模式 (Automatic mode)」,即可囊括大多数的 GPS 模块作业,并可透过程序设计的方式,计算都卜勒与随机距离信息;当然,此功能亦提供手动模式。在手动模式 (Manual mode) 中,使用者可个
别指定每组人造卫星的信息。图 4 即显示此 2 种作业模式所提供的输入参数。
表2. GPS 工具组自动与手动模式的默认值
请注意,工具组将根据所指定的星历档案,于可能的数值范围中强制设定 GPS 的 TOW。因此,若选择的数值
超出该星历档案的范围,工具组将自动设定为最接近的数值并提醒使用者。「niGPS Write Waveform To File」范例程序即可建立 GPS 基频波形 (自动模式),而其人机接口即如下图所示。
图 3. 简单的范例程序即可建立 GPS 测试波形。
请注意,某些特定量测作业,将决定用户所建立 GPS 测试的文件类型。举例来说,当量测接收器敏感度时,将仿真单一人造卫星。另一方面来说,需要定位作业的量测 (如 TTFF 与位置精确度),所使用的 GPS 讯号将仿真多组人造卫星。基于上述需求,NI GPS 工具组所搭配的范例程序,将同时包含单位星与多重卫星仿真功能。
记录空气中的 GPS 讯号
建立 GPS 波形时,其独特又日趋普遍的方式,即是直接从空气中撷取之。在此测试中,我们使用向量讯号分析器 (如 NI PXI 5661) 记录讯号,再透过向量讯号产生器 (如 NI PXIe-5672) 产生已记录的讯号。由于在记录 GPS 讯号时,亦可撷取实际的讯号减损 (Impairments),因此在播放讯号时,可进一步了解接收器于布署环境中的作
业情形。
只要透过极为直接的方式,即可撷取空气中的 GPS 讯号。在 RF 记录系统中,我们将适合的天线与放
大器,搭
配使用 PXI 向量讯号分析器与硬盘,以撷取最多可达数个小时的连续数据。举例来说,1 组 2 TB 的 RAID 磁盘阵列,即可记录最多 25 个小时的 GPS 波形。由于此篇技术文件将不会讨论串流的特殊技术,因此若需要相关
范例程序代码,请至:
ni/streaming/rf. 透过下列段落,即可了解应如何针对 RF 记录与播放系统,设定合适的 RF 前端。
不同类型的无线通信讯号,均需要不同的带宽、中央频率,与增益。以 GPS 讯号来说,基本系统需求是以
1.57542 GHz 的中央频率,记录
2.046 MHz 的 RF 带宽。依此带宽需求,至少必须达到 2.5 MS/s (1.25 x 2 MHz) 取样率。注意:此处的 1.25 乘数,是根据 PXI-5661 数字降转换器 (DDC) 于降频 (Decimation) 阶段的下
降 (Roll-off) 滤波器所得出。
在下方说明的测试作业中,我们使用 5 MS/s (20 MB/s) 取样率以撷取完整的带宽。由于标准 PXI 控制器硬盘即
可达到 20 MB/s 或更高的数据流量,因此不需使用外接的 RAID 亦可将 GPS 讯号串流至磁盘。然而,基于 2 个理由,我们仍建议使用外接硬盘。首先,外接硬盘可提升整体的数据储存量,并记录多组波形。其次,外接硬盘不会对 PXI 控制器的硬盘造成额外负担。在下方说明的测试作业中,我们采用 1 组 USB 2.0 的外接硬盘。此硬
盘为 320 GB 的 Western Digital Passport,具有 5400 RPM 的硬盘转速。在我们的测试作业中,一般读取速度
约落在 25 ~ 28 MB/s。因此该款硬盘可同时用于 GPS 波形数据串流的仿真 (6 MB/s) 与记录 (20 MB/s) 作业。GPS 讯号记录作业最为特殊之处,即是选择并设定合适的天线与低噪声放大器 (LNA)。透过一般被动式平面天
线 (Passive patch antenna),即可于 L1 GPS 频带中发现介于 -120 ~ -110 dBm 的常见峰值功率 (此处为 -116 dBm)。由于 GPS 讯号的功率强度极小,因此必须进行放大作业,以使向量讯号分析器可撷取卫星讯号的完整动态范围。虽然有多个方法可将合适的增益强度套用至讯号,不过我们发现:若使用主动式 GPS 天线搭配 NI
PXI-5690 前置放大器 (Pre-amplifier) 时,即可达到最佳效果。若串联 2 组各可达 30 dB 增益的 LNA,则总增益则可达到 60 dB (30 + 30)。因此,向量讯号分析器可测得的峰值功率,将从 -116 dBm 提升至 -56 dBm。下图
即为该项设定的范例系统:
图 4. GPS 接收器与串联的 LNA。
请注意,记录操作系统的必备组件之一,即为主动式 GPS 天线。主动式 (Active) GPS 天线,包含 1 组平面天线与 1 组 LNA。此款天线一般均需要 2.5V ~ 5V 的 DC 偏压电压,并仅需约 $20 美金即可购买现成产品。为了简单起见,我们使用 1 组天线搭配 1 组 SMA 接头。我们将于下列段落中看到,在 RF 前端的第一组 LNA 噪声图形极为重要;该图形将可确认进行记录作业的仪控,是否对无线讯号构成最低噪声。亦请注意,图 4 中的向量讯号分析器为简化图标。实际的 PXI-5661 为 3 阶段式超外差 (Super-heterodyne) 向量讯号分析器,较复杂于图中所示。
若将 60 dB 套用至无线讯号中,则可于 L1 中得到约 -60 ~ -50 dBm 的峰值功率。若以扫频 (Swept spectrum) 模式设定 VSA 并分析整体频谱,则亦将发现 L1 频带 (FM 与移动电话)之外的带中功率 (Power in band),其强度将高于 GPS 讯号。然而,带外 (Out-of-band) 讯号的峰值功率一般均不会超过 -20 dBm,且将透过 VSA 的多组带通 (Band pass) 滤波器之一进行滤波作业。若要检视记录装置的 RF
前端是否达到应有效率,最简单的方法之一即为开启 RFSA 示范面板的范例程序。透过此程序,即可于 L1 GPS 频带中呈现 RF 频谱。图 7 即为常见的频谱。请注意,此频谱截图是透过 GPS 中心频率于室外所得。主动式 GPS 天线与 PXI-5690 前置放大器,可达到 60 dB 的总增益。
中心频率:1.57542 GHz
展频 (Span):4 MHz
RBW:10 Hz
平均:RMS、20 Averages
图 5. 仅透过极小的分辨率带宽 (RBW),才可于频谱中呈现 GPS
此处使用前面所提到的 RF 记录与播放 LabVIEW 范例程序;设定 -50 dBm 的参考准位、1.57542 GHz 中央频率,与 5 MS/s 的 IQ 取样率。下图即显示设置范例的人机接口:
图 6. RF 记录与播放范例的人机接口。汽车gps导航
GPS 讯号的最长记录时间,将根据取样率与最大储存容量而定。若使用 2 TB 容量的 Raid 磁盘阵列 (Windows XP 所支持的最大磁盘),将可透过 5 MS/s 取样率记录最多 25 个小时的讯号。
设定 RF 前端
由于串联的 LNA 可提供 60 dB 的增益,因此使用者可大幅提升向量讯号分析器前端的功率。在我们的量测作业中,60 dB 的增益即足以将峰值功率从 -116 dBm 提升至 -56 dBm。而透过 60 dB 的增益 (与 1.5 dB 的噪声系数),讯号的噪声功率将为–112 dBm/Hz (-174 + 增益 + F)。因此,所能撷取到的讯噪比 (SNR) 最高可达 56.5 dB (-56 dBm +112.5 dBm),亦低于实际的仪器动态范围。由此可知,若有 80 dB 的动态范围,则 VSA 将可记录最大的 SNR,且不会有无线讯号的噪声影响。
当要记录任何无线讯号时,可将参考准位设定高出一般峰值功率至少 5 dB,以因应任何讯号强度的异常现象。在某些情况下,虽然上述此步骤将降低 VSA 的有效动态范围,但 GPS 讯号却不会受到影响。由于 GPS 讯号于天线输入的最大理想 SNR 即为 58 dB (-116 + 174),因此若于 VSA 记录超过 58 dB 的动态范围将无任何意义。因此,我们甚至可以「抛弃」仪器的动态范围达 10 dB 以上,亦不会影响记录讯号的质量 (在此带宽中,PXI-5661 将提供优于 75 dB 的动态范围)。
由于必须设定合适的参考准位,适当设定记录装置的 RF 前端亦显得同样重要。如先前所提,若要获得最佳的RF 记录数据,则建议使用主动式 GPS 天线。由于主动式天线内建 LNA,以低噪声系数提供最高 30 dB 的增益,因此亦可供应 DC 偏压。下方将接着说明多种偏压方式。
方法1: 以 GPS 接收器进行供电的主动式天线
第一个方法,是以 DC 偏压「T」供电至主动式天线。在此范例中,我们将 DC 讯号 (此为 3.3 V) 套用至偏压「T」的DC 埠,且「T」又将合适的 DC 偏移套用至主动式天线。请注意,此处将根据主动式天线的 DC 功率需求,进而决定是否套用精确的 DC 电压。下图即说明相关连结情形。
图 7. 使用 DC 偏压「T」供电至主动式 GPS 天线
在图7 中可发现,PXI-4110 可程序化 DC 电源供应器,即可供应 DC 偏压讯号。虽然多款现成的电源供应器(其中亦包含价位较低的电源供应器) 均可用于此应用中,我们还是使用 PXI-4110 以简化作业。同样的,现有常见的偏压器 (Bias tee) 可进行最高 1.58 GHz 的作业,而此处所使用的偏压器购自于
方法 2:以接收器供电至主动式天线
供电至主动式 GPS 天线的第二个方法,即是透过天线本身的接收器。大多数的现成 GPS 接收器,均使用单一端口供电至主动式 GPS 天线,且此端口亦透过合适的 DC 讯号达到偏压。若将主动式 GPS 接收器整合分裂器
(Splitter) 与 DC 阻绝器 (Blocker),即可供电至主动式 LNA,并仅记录 GPS 接收器所获得的讯号。下图即为正确的连结方式:
图 8. 透过 DC 阻绝器 (Blocker),将可记录并分析 GPS 讯号
如图 8 所示,GPS 接收器的 DC 偏压即用以供电至 LNA。请注意,由于当进行记录时,即可观察接收器的相关特性,如速度与精确度衰减 (Dilution) 情形,因此方法 2 特别适用于驱动程序测试。
串联式 (Noise figure) 噪声系数计算
若要计算已记录 GPS 讯号的总噪声量,只要出整体 RF 前端的噪声系数即可。就一般情况来说,整组系统的噪声系数,往往受到系统的第一组放大器所影响。在所有 RF 组件或系统中,噪声系数均可视为 SNRin 与SNRout (参阅:量测技术的噪声系数) 的比例。当记录 GPS 讯号时,必须先出整体 RF 前端的噪声系数。
当执行串联式噪声系数计算时,必须先行针对每笔噪声系数与增益,将之转换为线性等式;即所谓的「噪声因子(Noise factor)」。当以串联的 RF 组件计算系统的噪声系数时,即可先出系统的噪声因子,并接着转换为噪声系数。因此系统的噪声系数必须使用下列等式计算之:
等式 2. 串联式 RF 放大器的噪声系数计算作业 [3]
请注意,由于噪声因子 (nf) 与增益 (g) 属于线性关系而非对数 (Logarithmic) 关系,因此以小写表示之。下列即为增益与噪声系数,从线性转换为对数 (反之亦然) 的等式:
等式 3 到等式 6. 增益与噪声系数的线性/对数转换 [3]
内建低噪声放大器 (LNA) 的主动式 GPS 天线,一般均提供 30 dB 的增益,且其噪声系数约为 1.5 dB。在仪控记录作业的第二阶段,则由 NI PXI-5690 提供 30 dB 的附加增益。由于其噪声系数较高 (5 dB),因此第二组放大器仅将产生极小的噪声至系统中。在教学实作中,可针对记录仪控作业的完整 RF 前端,使用等式 2 计算其噪声因子。增益与噪声系数值即如下图所示:
表3. RF 前端的首 2 组组件噪声系数与因子。
根据上列计算,即可出接收器的整体噪声因子:
等式 7. RF 记录系统的串联噪声系数
若要将噪声因子转换为噪声系数 (单位为 dB),则可套用等式 3 以获得下列结果:
等式 8. 第一组 LNA 的噪声系数将影响接收器的噪声系数
如等式 8 所示,第一组 LNA (1.5 dB) 的噪声系数,将影响整组量测系统的噪声系数。透过 VSA 的相关设定,可让仪器的噪声水平 (Noise floor) 低于输入激发的噪声水平,因此用户所进行的记录作业,将仅对无线讯号造成1.507 dB 的噪声。
对 GPS 接收器发出讯号
由于多款接收器可使用合适的软件,让用户呈现如经度与纬度的信息,因此需要更标准化的方式进行自动量测作业。还好,目前有多款接收器均可透过众所周知的 NMEA-183 协议,以设定对 PXI 控制器发出讯号。如此一来,接收器将可透过序列或 USB 连接线,连续传送相关指令。在 NI LabVIEW 中,所有的指令均可转换语法,以回传卫星与定位信息。NMEA-183 协议可支持 6 种基本指令,并各自代表专属的信息。这些指令即如下表所示:
表4. 基本 NMEA-183 指令概述
以实际测试需要而言,GGA、GSA,与 GSV 指令应最为实用。更值得一提的是,GSA 指令的信息可用于了解接收器是否可达到定位作业需要,或可用于首次定位时间 (Time To First Fix,TTFF) 量测。当执行高敏感性的量测时,实际可针对所追踪的卫星,使用 GSV 指令回传 C/N (Carrier-to-noise) 比。
虽然无法于此详细说明 MNEA-183 协议,但可至其他网站寻所有的指令信息,如:
在 LabVIEW 中,这些指令可透过 NI-VISA 驱动程序转换其语法。
图9. 使用 NMEA-183 协议的 LabVIEW 范例
GPS 量测技术
目前有多种量测作业可为 GPS 接收器的效能进行特性描述 (Characterization),其中亦有数种常见量测可套用至所有的 GPS 接收器中。此章节将说明执行量测的理论与实作,如:敏感度、首次定位时间 (TTFF)、定位精确度/可重复性,与定位追踪不定性 (Uncertainty)。应注意的是,还有许多不同的方式可检验定位精确度,并执行接收器追踪功能的测试。虽然接着将说明多种基本方式,但仍无法概括所有。
敏感度 (Sensitivity) 量测作业介绍
敏感度为 GPS 接收器功能的最重要量测作业之一。事实上,对多款已量产的 GPS 接收器来说,仅限为最后生产测试所执行的 RF 量测而已。若深入来说,敏感度量测即为「接收器可追踪并接收上方卫星定位信息的最低卫
发布评论