摘要
随着世界经济的高速发展,石油的过度消耗导致了能源短缺和温室效应等全球性问题。鉴于汽车保有量的持续增加和日益严格的排放标准,研发混合动力等新能源汽车逐渐成为新的研究方向。混合动力汽车兼顾了良好的汽车动力性和燃油经济性,并且可以实现多种动力源耦合,因此得到了广泛应用。在混合动力关键技术中,整车建模仿真和设计控制策略是学术研究基础。本文在设计混联式混合动力系统的基础上,开展了参数设计、整车模型建立和控制策略等研究。
首先,根据混合动力车型的研究成果,分析了国内外混合动力系统的关键技术。其次,研究了混合动力系统的结构、耦合方式以及混合度相关理论,作为本文的理论基础。然后,选择国产某款混合动力汽车的基本技术参数作为参考,设计了一种混联式系统,主要特征是在发动机和驱动电机端设置离合器。根据车型特征制定动力性和经济性指标,完成了动力系统部件的选型和相关技术参数计算。在此基础上,应用AVL CRUISE仿真软件建立整车模型,主要包括动力源部件模型和动力电池模型。在MATLAB/SIMULINK环境下,设计出了符合混联式混合动力汽车的控制策略,本文选择电动机辅助能量控制策略,包括需求转矩计算、运行模式切换和动力分配等模块,并且在AVL CRUISE软件中设置典型NEDC 循环工况,建立汽车动力性和燃油经济性计算任务,完成了AVL CRUISE和MATLAB的联合仿真。根据对仿真数据和曲线的分析,显示该设计方案的系统参数符合最初设定的动力性和经济性要求,控制策略可以实现对设计车型的动力分配。此外车辆在40km/h车速下以纯电动模式运行时,动力电池保
持状态稳定,续航里程可以达到27.1km。最后,在iSIGHT优化软件中选择多岛遗传算法,完成了变速器档位传动比和主减速器比的优化。通过对比仿真结果,显示优化方案燃油消耗降低了12.9%,并且改善了设计车型的整体性能。
关键词:混合动力汽车,动力系统匹配,建模仿真,控制策略,优化
Abstract
With the rapid development of the world economy,the excessive consumption of oil has led to such global problems as energy shortage and greenhouse effect.In view of the continuous increase of car ownership and increasingly strict emission standards, the research and development of hybrid and other new energy vehicles has gradually become a new research direction.Hybrid electric vehicle has been widely used because of its good performance and fuel economy,and its ability to realize multiple power source coupling.Among the key technologies of hybrid power,vehicle modeling,simulation and design control strategy are the basis of academic research. Based on the design of hybrid power system,the research on parameter design, vehicle model construction and control strategy is carried out in this paper.
Firstly,according to the research results of hybrid electric vehicle,the key technologies of hybrid elect
ric vehicle system at home and abroad are analyzed. Secondly,the structure,coupling mode and mixing degree of hybrid power system are studied as the theoretical basis of this paper.Then,select the basic technical parameters of a domestic hybrid electric vehicle as a reference,design a hybrid system,the main feature is to set the clutch at the end of the engine and drive motor. According to the characteristics of the vehicle,the dynamic performance and economic indicators are formulated,and the selection of power system components and the calculation of relevant technical parameters are completed.On this basis, AVL CRUISE simulation software is used to build the vehicle model,including the power source component model and the power battery model.In MATLAB/SIMULINK environment,the design is out of accord with mixed type hybrid control strategy,this article choose motor auxiliary energy control strategy, including demand torque calculation and operation mode switching and power distribution module,and the AVL CRUISE software set in the typical NEDC driving cycles,build automobile power performance and fuel economy calculation task, completed the AVL CRUISE and MATLAB simulation.According to the analysis of simulation data and curves,it is shown that the system parameters of the design scheme meet the initial set requirements of dynamic performance and economic efficiency,and the control strategy can realize the power distribution of the designed vehicle.In addition,when the vehicle runs in pure electric mode at a speed of40km/h, the power battery maintains a stable state and the driving range can reach27.1km.
Finally,multi-island genetic algorithm was selected in the iSIGHT optimization software to optimize the transmission gear ratio and the main reducer ratio.By comparing the simulation results,it is shown that the optimized scheme reduces the fuel consumption by12.9%and improves the overall performance of the designed vehicle.
Keywords:hybrid electric vehicle,power system matching,modeling and simulation, control strategy,optimization
目录
第1章绪论 (1)
1.1课题的背景及意义 (1)
1.2国内外混合动力汽车研究现状 (2)
1.2.1国外混合动力汽车研究现状 (2)
1.2.2国内混合动力汽车研究现状 (4)
1.3混合动力汽车发展关键技术 (5)
进口雪铁龙
1.4论文研究的对象和主要内容 (7)
第2章混合动力汽车系统研究与动力系统参数设计 (8)
2.1混合动力汽车系统结构分类 (8)
2.1.1串联式混合动力汽车 (8)
2.1.2并联式混合动力汽车 (9)
2.1.3混联式混合动力汽车 (9)
2.2混合动力汽车动力耦合方式研究 (10)
2.2.1转矩耦合式 (10)
2.2.2转速耦合式 (11)
2.2.3功率耦合式 (11)
2.3混合动力汽车混合度研究 (12)
2.4混合动力汽车系统结构设计 (13)
2.4.1混联式混合动力汽车动力系统结构分析 (13)
2.4.2整车基本参数 (14)
2.4.3动力性与经济性指标 (14)
2.5动力系统选型与理论参数匹配 (14)
2.5.1整车动力源总功率参数计算 (14)
2.5.2发动机选型与参数计算 (16)
2.5.3驱动电动机MG2选型与参数计算 (18)
2.5.4电动机MG1选型与参数计算 (20)
2.5.5传动系统选型与参数计算 (20)
2.5.6动力电池选型与参数计算 (21)
2.6本章小结 (23)
第3章混联式混合动力汽车的仿真模型建立 (24)
3.1仿真软件简介 (24)
3.2基于AVL CRUISE整车模型的建立步骤 (25)
3.3动力源模型建立 (26)
3.3.1发动机模型的建立 (26)
3.3.2电机模型的建立 (28)
3.3.3动力电池模型的建立 (29)
3.4混联式混合动力汽车整车模型 (31)
3.4.1整车模型搭建 (31)
3.4.2模型信号连接 (33)
3.5计算任务的建立 (34)
3.5.1典型行驶工况选择 (34)
3.5.2动力性能与经济性能计算任务建立 (34)
3.6本章小结 (35)
第4章整车控制策略设计与联合仿真 (36)
4.1混合动力汽车控制策略分类 (36)
4.1.1基于规则的能量控制策略 (36)
4.1.2基于优化的能量控制策略 (37)
4.1.3基于智能优化算法的能量控制策略 (38)
4.2整车控制策略选择 (39)
4.3混联式混合动力汽车系统工作模式 (39)
蓝驱技术
4.4工作模式切换判断条件 (41)
全国车牌4.4.1纯电动模式 (41)
4.4.2发动机驱动模式 (41)
4.4.3混合驱动模式 (42)
4.4.4行车充电模式 (43)
4.4.5串联充电模式 (43)
4.4.6制动能量回收模式 (44)
4.5基于MATLAB/SIMULINK整车控制策略设计 (44)
4.5.1需求转矩计算模块 (44)
4.5.2基于SIMULINK/Stateflow工作模式切换 (45)
4.5.3转矩分配模块 (46)
4.5.4基于SIMULINK控制策略搭建 (52)
4.5.5建立MATLAB与CRUISE连接 (53)
4.6本章小结 (54)
第5章仿真结果分析与参数优化 (55)
5.1仿真结果分析 (55)
5.1.1动力性仿真结果分析 (55)
5.1.2经济性仿真结果分析 (56)
5.2基于多目标参数优化 (59)landy
5.2.1多目标参数优化理论 (59)
5.2.2优化变量 (60)
5.2.3目标函数 (60)
东风风光
5.2.4确定约束条件 (60)
5.2.5建立优化模型 (60)
5.2.6优化结果分析 (63)
5.3优化结果参数对比分析 (64)
5.4本章小结 (64)
第6章结论与展望 (66)
6.1研究总结 (66)
6.2论文创新点 (66)
6.3展望 (66)
参考文献 (68)
致谢 (72)
京沪高速路况硕士期间的研究成果和发表的论文 (73)