第一篇:汽车维修中五大探伤方法
汽车维修中五大探伤方法
工业无损探伤的方法很多,目前国内外最常用的探伤方法有五种,即人们常称的五大常规探伤方法。长沙机电汽车学院将介绍五大常规探伤方法及其特点。五大常规探伤方法概述
五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。
1、射线探伤方法
射线探伤是利用射线的穿透性和直线性来探伤的方法。这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。
2、超声波探伤方法
通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收(缺陷)界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。根据超声波在介质中传播的速度(常称声速)和传播的时间,就可知道缺陷的位置。当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷(当量)的大小。常用的探伤波形有纵波、横波、表面波等,前二者适用于探测内部缺陷,后者适宜于探测表面缺陷,但对表面的条件要求高。
3、磁粉探伤方法
磁粉探伤是建立在漏磁原理基础上的一种磁力探伤方法。当磁力线穿过铁磁材料及其制品时,在其(磁性)不连续处将产生漏磁场,形成磁极。此时撒上干磁粉或浇上磁悬液,磁极就会吸附磁粉,产生用肉眼能直接观察的明显磁痕。汽车除味方法
磁力探伤中对缺陷的显示方法有多种,有用磁粉显示的,也有不用磁粉显示的。用磁粉显示的称为磁粉探伤,因它显示直观、操作简单、人们乐于使用,故它是最常用的方法之一。不用磁粉显示的,习惯上称为漏磁探伤,它常借助于感应线圈、磁敏管、霍尔元件等来反映缺陷,它比磁粉探伤更卫生,但不如前者直观。由于目前磁力探伤主要用磁粉来显示缺陷,因
此,人们有时把磁粉探伤直接称为磁力探伤,其设备称为磁力探伤设备。
4、涡流探伤方法
涡流探伤是由交流电流产生的交变磁场作用于待探伤的导电材料,感应出电涡流。如果材料中有缺陷,它将干扰所产生的电涡流,即形成干扰信号。用涡流探伤仪检测出其干扰信号,就可知道缺陷的状况。
5、渗透探伤方法
渗透探伤是利用毛细现象来进行探伤的方法。对于表面光滑而清洁的零部件,用一种带(常为红)或带有荧光的、渗透性很强的液体,涂覆于待探零部件的表面。若表面有肉眼不能直接察知的微裂纹,由于该液体的渗透性很强,它将沿着裂纹渗透到其根部。然后将表面的渗透液洗去,再涂上对比度较大的显示液(常为白)。放置片刻后,由于裂纹很窄,毛细现象作用显着,原渗透到裂纹内的渗透液将上升到表面并扩散,在白的衬底上显出较粗的红线,从而显示出裂纹露于表面的形状,因此,常称为着探伤。
第二篇:探伤实验方法(推荐)
无损检测(无损探伤)nondestryctive testing(NDT)就是对焊接加工件进行非破坏性检验和测量。1 渗透检验penetrant festing(PT)
通过施加渗透剂,用洗净剂去除多余部分,如有必要,施加显像剂以得到零件上开口于表面的某些缺陷的指示。磁粉检验maganetic particle testing(MT)
利用漏磁和合适的检验介质发现试件表面和近表面的不连续性的无损检测方法。涡流检验eddy current testing(ET)
应用在试件中的涡流(由于外磁场在时间或空间上的变化而在导体表面及近表面产生的感应电流),分析试件质量信息的无损检测方法。超声检验ultrasonic testing(UT)
超声波在被检材料中传播时,根据材料缺陷所显示的声学性质对超声波传播的影响来探测其缺陷的方法。射线检验radiographic testing(RT)
利用X射线或核辐射以探测材料中的不连续性,并在记录介质上显示其图像。
(补充我上面的答案)无损探伤是指对材料或工件实施一种不损害或不影响其未来使用性能
或用途的检测手段。通过使用无损探伤,能发现材料或工件内部和表面所存在的缺欠,能测量工件的几何特征和尺寸,能测定材料或工件的内部组成、结构、物理性能和状态等。
常用 NDT 方法的英文及其缩写:
超声检测 ultrasonic testing — UT
磁粉检测 magnetic particle testing — MT
计算机层析成像检测 computed tomographic testing — CT
目视检测 visual testing — VT
射线照相检测 radiographic testing — RT
渗透检测 penetrant testing — PT
声发射检测 acoustic emission testing — AT、AE
涡流检测 eddy current testing — ET
泄漏检测 leak testing — LT
在非压力容器上,当板厚较厚时,建议采用UT。UT不宜用于奥氏体材料的对接焊缝。MT和PT都是表面检测的一种方法,MT只能用于铁磁性材料,它的灵敏度比PT高。对于非铁磁性材料的表面检查要用PT。
第三篇:曲线钢轨探伤方法 -
曲线钢轨探伤方法
一
鱼鳞伤的成因
鱼鳞伤主要分布于曲线、坡道地段、直线上也有但是很少。基本上是由于轮轨的相互作用,轨顶面反复出现接触应力,轮轨接触面表层金属发生塑性变形,当接触应力接近钢轨的剪切屈服极限时,使钢轨的几何形状发生变化,表现为轨头踏面压宽、碾边、垂直磨耗和侧面磨耗。钢轨塑性变形程度和磨耗速率与轮轨接触应力和摩擦力成正比与钢轨的硬度成反比。钢
轨表面的塑性变形一方面使轨顶表面金属加工硬化,硬度提高在表面出现疲劳裂纹,导致薄片状剥离。另一方面疲劳裂纹易在表面萌发和沿变形流线方向发展。当塑性变形达到一定深度时,在表面形成的疲劳裂纹将在接触剪应力作用下沿变形流线方向倾斜向下发展。当裂纹的扩展速率大于磨耗速率时,在接触应力较大的轨顶内侧小圆弧处出现鱼鳞状剥离裂纹,(这种鱼鳞状的剥离裂纹的方向与行车方向一致)剥离裂纹深度与塑性变形对应,在小半径曲线外轨处,一般可达2mm以上。在曲线外轨轮轨的粘着濡滑作用下,促进了裂纹发展,前后鱼鳞裂纹贯通而出现掉块。
在长大坡道、信号机前后线路上列车爬坡制动、启动、轮轨剧烈摩擦。使钢轨表面产生淬火马氏体金相组织,硬度高,韧性低。在轮轨接触应力作用下易产生龟裂和剥离。
目前我们统称为鱼鳞伤或鱼鳞伤引起的剥落掉块。二
鱼鳞伤的发展趋势
根据我段调查结果,鱼鳞伤的发展趋势有以下三种。1随列车的运行磨掉,鱼鳞伤不发展。
2随着塑性变形的流线方向发展,达到一定深度时在水平方向的对称脉环正交剪应力作用下
形成水平帽。水平帽继续扩展,有的形成掉块,由于轨道的不平顺,增加了轮轨冲击力,加速了裂纹发展,如果遇到钢轨本身存在链状夹杂物,向下形成纵横向型核伤。
3鱼鳞裂纹直接向下倾斜形成核伤。三
目前我段钢轨鱼鳞伤的形势
1内昆线和沪昆线属于单线地段,由于列车的往复运行两个趋向的鱼鳞状裂纹扩展相较,主要形成轨面的剥离。由于沪昆线曲线半径小,曲线上股的轮轨接触压力很大,所以往往很小的轨面剥离就形成断轨。这和我们使用弯轨器解剖核伤的原理很相近。
2洙六复线在曲线地段大面积存在鱼鳞伤。成密集状分布。属典型的鱼鳞伤。由于洙六复线运量大,速度快使得磨耗速率近似或大于鱼鳞裂纹的扩展速度普遍深度不深一般只有1~2毫米。
四
鱼鳞伤带来问题
1鱼鳞伤有的深度虽然不深,但是由于伤损趋向良好,所以在仪器上的波形也很强与早期小核伤的出波位置,位移量近似,同时由于鱼鳞伤连续分布严重干扰了我们的判伤。造成早期小核伤的漏检。
2由于轴重增加,致使钢轨接触疲劳强度不足,形成轨头表面剥离(或掉块),在轨面呈黑斑并继续往前延伸,在其延伸方向容易产生核伤。核伤的上部带有剥离层“帽沿”。由于“水平帽”的存在阻挡了超声波对于“水平帽”下核伤无法检测。3车流密度高,行车速度快的重载轨道区段。由于列车在复线中单向运行,小半径曲线上股轨头内侧表面经常发生鱼鳞状破损。它不同于一般的金属碎裂和剥离,常以裂纹尖端为疲劳源,逐步形成核伤,(其特点是发展快,且呈多面核。)造成钢轨折断。严重影响行车安全。
发布评论