“莱洛三角形”是机械学家莱洛研究发现的一种曲边三角形,转子发动机的设计就是利用了莱洛三角形.转子引擎只需转一周,各转子便有一次进气、压缩、点火与排气过程,相当于往复式引擎运转两周,因此具有小排气量就能成就高动力输出的优点.另外,由于转子引擎的轴向运转特性,它不需要精密的曲轴平衡就可以达到非常高的运转转速.“莱洛三角形”是分别以正三角形的顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形.
“莱洛三角形”怎么画
“莱洛三角形”又称为“鲁洛克斯三角形”、“勒洛三角形”、“圆弧三角形”,是一种特殊三角形,“莱洛三角形三角形”是这样得到的:先画正三角ABC,然后以正三角形ABC的三个顶点为圆心,边长长为半径画弧得到的图形。
“莱洛三角形”的性质
1.边长为a的鲁洛克斯三角形的宽度为a,直径为a的圆的宽度也为a,同宽度的鲁洛克斯三角形与圆具有一些相同的性质:
2.显然,作为宽度为a的等宽曲线,鲁洛克斯三角形或圆上任意两点间的距离不会超过a。
3.将它们放在一个边长为a的正方形内旋转时,都能够始终保持与正方形的每一边都有且只有一个公共点,且两对边的公共点的连线互相垂直。
发布评论