和圆一样的三角形
Maxwellsdemon 2012-02-03 21:17:07
如果说三角形和圆是一家,你大概不信。但确确实实,一个以19世纪德国工程师命名的三角形,勒洛三角形,就和圆有很多相同之处。并且,它还经常出现在制造业中,无数奇怪或者常用的东西,按照它的样子被造出来。
数学之所以重要,不仅因为它是科学理论的基石,还因为数学在日常生活、工业制造甚至是艺术品审美上都用着非常广泛的应用和体现。如果不知道一些基本的数学道理,就是被科学武装到牙齿的 NASA 工程师也会犯一些低级错误。比如今天的故事主角——勒洛三角形。这个和圆
是一家的多边形,不仅性质奇特,还是制造业的宠儿。它是如何渗透到广大劳动人民身边的?死理性派告诉你。
不识勒洛三角形,NASA都要犯错误
历史上,一枚美国火箭的发射流程是这样的:先在工厂完成推进器的组装,然后用驳船运至佛罗里达的肯尼迪航天中心进行整体吊装,最后在发射台上点火发射。然而,一些 NASA 的工程师发现一个问题:在运抵总装车间之前,推进器需要横躺着跋涉数千公里(例如在加利福尼亚组装的土星 -5 的第二级推进器甚至需要绕道巴拿马运河),但在这一过程中,由于其本身的巨大重量,推进器有可能会发生变形。对于液体燃料火箭来说,轻微的变形也可能导致燃料泄漏造成发射事故。为了检验火箭截面是否是正圆, NASA 的技术人员们提出了一个标准,每隔 60° 测量一次火箭的直径(该方向上界面内两点距离的最大值),如果 3 次测得的直径都相等,那火箭的截面即使不是标准的圆形也差不多了。
然而这个方案真的靠谱么?很不幸,一种叫做定宽曲线的曲线族粉碎了他们的幻想。定宽曲线是这样的一种几何图形,它们在任何方向上的直径(或称宽度)都是定值。当然,圆也是一种定宽曲线,但是定宽曲线可远远不止这么一种,其中最具有代表性的当属勒洛三角形。
勒洛三角形
像上图这样把 3 个等半径的圆重合起来,两两互相经过圆心, 3 个圆相交的部分就是勒洛三角形,或者其发现者所称的曲边三角形 如果不幸碰到这样的一条曲线, NASA 转子发动机的工作人员无论怎么测直径,得到的结果都会是一样的。
勒洛三角形和它的一干定宽曲线兄弟们都具有许多有趣的特性,其中最重要的当然就是它们的定宽性。使用截面是定宽曲线的滚木来搬运东西,不会发生上下抖动。实际上这样的装置
在许多科技馆都能看到,下图就是柏林一家博物馆内的定宽曲线滚木。另外定宽曲线还有一个有趣的性质,就是宽度相等的定宽曲线有相同的周长,所以下图中的圆形滚木转过一周的时候,旁边的勒洛三角形滚木也恰好转过一周。
制造工艺上的广泛应用
应用上面滚木的原理,可以制造出许多有趣的小玩意。例如我国劳动人民就充分发挥聪明才智制造了一辆利用等宽曲线轮的 角轮自行车 ,据说已经成功申请专利了。
有人会说角轮自行车只是观赏性大于实用性的玩具,确实如此。那不妨让我们再来看看等宽曲线在汽车工业上的应用。当然,汽车制造商们不会用等宽曲线制造轮子,他们把等宽曲线藏在了汽车更核心的部分——发动机里。下图就是马自达公司的转子发动机截面图。其实转子发动机并不是什么新鲜发明,早在 20 世纪 50 年代德国工程师汪克尔就制造出了第一台转子发动机的样机,因此这种发动机又叫做汪克尔发动机。
熟悉汽车的同学可能已经注意到了这种发动机与其他发动机的不同之处,它没有常见的活塞和曲杆。没错,因为对于转子发动机来说,这些麻烦的东西已经完全不需要了,取而代之的是一个转子。转子的截面是面积最小的等宽曲线勒洛三角形,无论转子转到什么角度,都严格将汽缸分成三部分,同时进行进气、压缩、点火与排气的周期,这样当转子转过一周时可以做功三次,效率远高于旋转两周才做工一次的传统四冲程活塞发动机。与传统四冲程发动
机相比,转子发动机具有体积更小、振动与噪音更低、结构简单、故障率低等优点。但转子发动机对材料和工艺的要求也更高,同时提升功率较为困难,所以目前市场上,采用转子发动机的汽车公司还并不多。
由于等宽性,等宽曲线还可以在一个正方形内贴着边沿滚动。 1914 年,一位注意到这一特性的美国工程师据此发明了方孔钻头。方孔钻头的截面是一个勒洛三角形,为使钻头更锋利,它被削去了一部分的。在工作时钻头的中心随着钻头的转动同时绕轴做圆周运动(事实上并不是严格的圆周运动),就可以钻出四角略圆的正方形。
方孔钻头分解图,中间的齿轮组是使钻头轴转动的机构
在上面的段落里,勒洛三角形大出风头,但是等宽曲线家族可不是只有这么一位成员。在其他地方我们也能看见等宽曲线的身影,许多国家的硬币就喜欢采用等宽曲线作为外形轮廓,例如英国的 20 便士与 50 便士银币采用的就是由 7 条弧组成的定宽曲线。除此之外,在不少艺术品中也常常能看到各种等宽曲线的身影,这主要是为了提高观赏价值了。
猜猜井盖为什么是圆的?本文或许可以帮助回答这个困惑过不少人的问题。
参考资料:
[1] 理查德费曼,《你干嘛在乎别人怎么想》
[2] 马丁加德纳,《意料之外的绞刑和其他数学娱乐》
[3] 汽车之家,气缸排列形式词条
[4] Scott SmithDrilling Square Holes