INVESTIGATION TO TORSIONAL
VIBRATION AND CONTROL OF
ELECTRIC VEHICLE DRIVETRAIN
ABSTRACT
The rapid development of China's economy has contributed to the growth of residential car ownership, but also exacerbated the energy shortage, environmental pollution and traffic congestion and other issues. Electric vehicle has the advantages of energy saving and environmental protection, and it has become a hot spot in the research and development of major automobile manufacturers. Meanwhile, People’s demand for automotive NVH performance is getting higher and higher. Since the torsional vibration of vehicle drivetrain has an important influence on the quality of NVH, it is of great practical significance to analyze torsional vibration of electric vehicle drivetrain. Although it is able to meet the general demands of the vehicle power performance with the main reducer with fixed speed ratio, it has high requirements for the performance of the drive motor and it is not conducive to reduce production co
sts. The electric vehicle can effectively reduce the power demand of the drive motor and improve the operating efficiency of the motor through the two speed transmission. This paper focus on the torsional vibration of the drivetrain for an electric vehicle equipped with the two speed automatic transmission (2AMT).
First, the mathematical model of the torsional vibration and the multi-body dynamics model based on ADAMS are established to analyze the vibration characteristics of the drivetrain for the electric vehicle. Second, the vector control model of permanent magnet synchronous motor (PMSM) is set up under the environment of Matlab/ Simulink. The
ABSTRACT
simulation results of the
i=0 control strategy and the maximum torque
d
per ampere control strategy are compared and analyzed, and the superiority of the maximum torque per ampere control strategy is verified. Next, an electromechanical coupling simulation model of the dri
vetrain is built by combining the dynamics model of torsional vibration of transmission system and the vector control model of PMSM. By using the coupling model, the torsional vibration response characteristics of the drivetrain and the influence of the related parameters on the torsional vibration of the drivetrain are analyzed. Finally, a feedforward-feedback torsional vibration controller is designed by the analysis of the two-degree-of-freedom simplified model. The simulation shows that the feedforward-feedback torsional vibration controller can effectively reduce the torsional vibration for the electric vehicle drivetrain and improve the ride comfort.
KEY WORDS: Electric vehicle,Torsional vibration,PMSM,
Electromechanical coupling,Vibration control
目录
摘要.................................................... I ABSTRACT ............................................... III 目录.................................................... V 第一章绪论. (1)
1.1 课题研究的背景和意义 (1)
1.2 国内外研究现状 (3)
1.2.1 汽车传动系扭转振动特性的研究 (3)
1.2.2 动力传动系扭转振动控制的研究 (7)
1.3 论文的主要研究内容 (8)
第二章纯电动汽车动力传动系统振动特性分析 (10)
2.1 纯电动汽车动力传动系统概述 (10)
2.2 动力传动系统扭振模型的建立 (12)
2.2.1 传动系模型简化原则及主要部件的简化 (12)
2.2.2 转动惯量和刚度参数计算 (14)
2.2.3 传动系扭转振动数学建模 (16)
2.3 动力传动系统自由振动特性及灵敏度分析 (17)
2.3.1 传动系自由振动频率计算及模态分析 (17)
2.3.2 传动系灵敏度分析 (20)
2.4 动力传动系统强迫振动特性分析 (24)
2.4.1 基于ADAMS的传动系多体动力学建模 (24)
2.4.2 两种方法计算结果的对比及模型验证 (27)
2.4.3 ADAMS强迫振动设置 (28)
2.4.4 传动系强迫振动仿真分析 (32)
目录
2.5 本章小结 (41)
第三章永磁同步电机矢量控制建模及仿真分析 (42)
3.1 永磁同步电机的分类 (42)
3.1.1 面装式永磁同步电机 (43)
3.1.2 内置式永磁同步电机 (44)
3.2 永磁同步电机的数学模型 (45)
3.2.1 坐标系与坐标变换 (45)
3.2.2 三相静止ABC坐标系下的数学模型 (47)
3.2.3 两相旋转dq坐标系下的数学模型 (48)
3.3 永磁同步电机矢量控制仿真模型 (48)
3.3.1 永磁同步电机矢量控制系统结构 (48)
3.3.2 永磁同步电机矢量控制策略 (49)
3.3.3 永磁同步电机矢量控制仿真模型 (51)
3.4 仿真结果与分析 (57)
i=0控制策略仿真 (57)
3.4.1
d
3.4.2 最大转矩/电流比控制策略仿真 (59)
i=0与最大转矩/电流比控制策略比较 (61)
3.4.3
d
3.5 本章小结 (62)
第四章动力传动系统机电仿真模型的建立与分析 (64)
4.1 传动系扭转振动动力学模型的建立 (64)
4.1.1 驱动电机模型 (64)
4.1.2 电机轴模型 (65)
4.1.3 2AMT模型 (65)
4.1.4 输出轴模型 (66)
4.1.5 减/差速器总成模型 (66)
4.1.6 半轴模型 (67)
4.1.7 车轮模型 (67)
4.1.8 整车模型 (68)
4.2 机电耦合仿真建模 (69)
4.3 动力传动系统多工况扭转振动响应 (69)
4.3.1 加速工况 (69)
4.3.2 制动工况 (72)
4.4 参数灵敏度分析 (75)
4.4.1 PI参数 (75)
4.4.2 电机转子转动惯量 (77)
4.4.3 转矩上升时间 (78)
4.4.4 车轮扭转刚度和扭转阻尼 (79)
4.5 本章小结 (81)
第五章前馈-反馈扭转振动控制器的设计 (82)
5.1 动力传动系统的简化模型 (82)
5.2 前馈-反馈扭转振动控制器的设计 (84)
5.2.1 简化模型的固有特性分析 (84)
5.2.2 前馈-反馈控制器的设计 (89)
5.3 控制器仿真结果验证 (92)
5.3.1 一挡时前馈-反馈控制仿真 (92)
5.3.2 二挡时前馈-反馈控制仿真 (94)
5.4 本章小结 (96)
第六章总结与展望 (97)
6.1 全文总结 (97)电动汽车电机
6.2 研究展望 (98)
参考文献 (99)
致谢 (104)
攻读学位期间的学术成果 (105)