嘉应学院物理系大学物理
学生实验报告
实验项目:
实验地点:
班级:
姓名:
座号:
实验时间:年日
物理与光信息科技学院编制
一、实验目的:
1、了解GMR效应的原理
2、测量GMR模拟传感器的磁电转换特性曲线
3、测量GMR的磁阻特性曲线
4、测量GMR开关(数字)传感器的磁电转换特性曲线
5、用GMR传感器测量电流
6、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理
7、通过实验了解磁记录与读出的原理
二、实验仪器设备:巨磁电阻实验仪
区域1
区域2
区域3
图5 巨磁阻实验仪操作面板
图5所示为巨磁阻实验仪系统的实验仪前面板图。
区域1——电流表部分:做为一个独立的电流表使用。
两个档位:2mA档和200mA档,可通过电流量程切换开关选择合适的电流档位测量电流。区域2——电压表部分:做为一个独立的电压表使用。
两个档位:2V档和200mV档,可通过电压量程切换开关选择合适的电压档位。区域3——恒流源部分:可变恒流源。
实验仪还提供GMR传感器工作所需的4V电源和运算放大器工作所需的±8V 电源。基本特性组件
图6 基本特性组件
基本特性组件由GMR模拟传感器,螺线管线圈及比较电路,输入输出插孔组成。用以对GMR
磁电转换特性,磁阻特性进行测量。
GMR传感器置于螺线管的中央。
螺线管用于在实验过程中产生大小可计算的磁场,由理论分析可知,无限长直螺线管(1)
式中n为线圈密度,I为流经线圈的电流强度, 0 4  10 7H/m为真空中的磁导率。采用国际单位制时,由上式计算出的磁感应强度单位为特斯拉(1特斯拉=10000高斯)。电流测量组件
图7 电流测量组件
电流测量组件将导线置于GMR模拟传感器近旁,用GMR传感器测量导线通过不同大小电流时导线周围的磁场变化,就可确定电流大小。与一般测量电流需将电流表接入电路相比,这种非接触测量不干扰原电路的工作,具有特殊的优点。角位移测量组件
图8 角位移测量组件
角位移测量组件用巨磁阻梯度传感器作传感元件,铁磁性齿轮转动时,齿牙干扰了梯度传感器上偏置磁场的分布,使梯度传感器输出发生变化,每转过一齿,就输出类似正弦波一个周期的波形。利用该原理可以测量角位移(转速,速度)。汽车上的转速与速度测量仪就是利用该原理
制成的。
磁读写组件
图9 磁读写组件
磁读写组件用于演示磁记录与读出的原理。磁卡做记录介质,磁卡通过写磁头时可写入数据,通过读磁头时将写入的数据读出来。
实验R3 R4 a几何结构
图10 GMR模拟传感器结构图
对于电桥结构,如果4个GMR电阻对磁场的响应完全同步,就不会有信号输出。图10中,将处在电桥对角位置的两个电阻R3、R4 覆盖一层高
导磁率的材料如坡莫合金,以屏蔽外磁场对它输出/V
们的影响,而R1、R2 阻值随外磁场改变。设无
外磁场时4个GMR电阻的阻值均为R,R1、R2 在外
磁场作用下电阻减小ΔR,简单分析表明,输出
电压:
UOUT = UINΔR/(2R-ΔR)(2)
屏蔽层同时设计为磁通聚集器,它的高导
磁率将磁力线聚集在R1、R2电阻所在的空间,进
一步提高了R1、R2 的磁灵敏度。
从图10的几何结构还可见,巨磁电阻被光
磁感应强度/高斯
图11 GMR模拟传感器的磁电转换特性
刻成微米宽度迂回状的电阻条,以增大其电阻至kΩ数量级,使其在较小工作电流下得到合适的电压输出。
图11是某GMR模拟传感器的磁电转换特性曲线。图12是磁电转换特性的测量原理图。特斯拉效应
图12 模拟传感器磁电转换特性实验原理图
三、实验原理:
根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走
过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律R= l/S中,把电阻率 视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。
电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。
在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。
无外磁场时顶层磁场方向
无外磁场时底层磁场方向电阻欧姆\ 磁场强度/ 高斯图2 多层膜GMR结构图图3 某种GMR材料的磁阻特性
图3是图2结构的某种GMR材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。
有两类与自旋相关的散射对巨磁电阻效应有贡献。
其一,界面上的散射。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。
其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似
两个中等阻值的电阻的并联,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。
多层膜GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在制作
模拟传感器方面得到广泛应用。在数字记录与读出领域,为进一步提高灵敏度,发展了自旋阀结构的GMR。如图4所示。
自旋阀结构的SV-GMR(Spin valve GMR)由钉扎层,被钉扎层,中间导电层和自由层构成。其中,钉扎层使用反铁磁材料,被钉扎层使用硬铁磁材料,铁磁和反铁磁材料在交换耦合作用下形成一个偏转场,此偏转场将被钉扎层的磁化方向固定,不随外磁场改变。自由层使用软铁磁材料,它的磁化方向易于随外磁场转动。这样,
很弱的外磁场就会改变自由层与被钉扎层磁场的相对取
向,对应于很高的灵敏度。制造时,使自由层的初始磁化方向与被钉扎层垂直,磁记录材料的磁化方向与被钉扎层的方向相同或相反(对应于0或1),当感应到磁记录材料的磁场时,自由层的磁化方向就向与被钉扎层磁
化方向相同(低电阻)或相反(高电阻)的方向偏转,检测出电阻的变化,就可确定记录材料所记录的信息,图4自旋阀SV-GMR结构图硬盘所用的GMR 磁头就采用这种结构。
四、实验步骤:
1. 将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。实验仪的4伏电压源接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”,基本特性组件“模拟信号输出”接至实验仪电压表。
按表1数据,调节励磁电流,逐渐减小磁场强度,记录相应的输出电压于表格“减小磁场”列中。由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,
从上到下记
录相应的输出电压。
电流至-100mA后,逐渐减小负向电流,电流到0时同样需要交换恒流输出接线的极性。从下到上记录数据于“增大磁场”列中。
理论上讲,外磁场为零时,GMR传感器的输出应为零,但由于半导体工艺的限制,4个桥臂电阻值不一定完全相同,导致外磁场为零时输出不一定为零,在有的传感器中可以观察到这一现象。
根据螺线管上标明的线圈密度,由公式(1)计算出螺线管内的磁感应强度B。以磁感应强度B作横座标,电压表的读数为纵座标作出磁电转换特性曲线。
不同外磁场强度时输出电压的变化反映了GMR传感器的磁电转换特性,同一