最全直流电机工作原理与控制电路解析(无刷+有刷+伺服+步进)
    直流电动机是连续的执行器,可将电能转换为(机械)能。直流电动机通过产生连续的角旋转来实现此目的,该角旋转可用于旋转泵,风扇,压缩机,车轮等。
    与传统的旋转直流电动机一样,也可以使用线性电动机,它们能够产生连续的衬套运动。基本上有三种类型的常规电动机可用:AC型电动机,(DC)型电动机和步进电动机。
汽车电路原理图    典型的小型直流电动机
    交流电动机通常用于高功率的单相或多相(工业)应用中,需要恒定的旋转扭矩和速度来控制大负载,例如风扇或泵。
    在本(教程)中,我们仅介绍简单的轻型直流电动机和步进电动机,这些电动机用于许多不同类型的(电子),位置控制,微处理器,(PI)C和(机器人)类型的电路中。
    基本直流电动机该直流电动机或直流电动机,以给它的完整的标题,是用于产生连续运动和旋转,其速度可以容易地控制,从而使它们适合于应用中使用是速度控制,伺服控制类型的最
常用的致动器,和/或需要定位。直流电动机由两部分组成,“定子”是固定部分,而“转子”是旋转部分。结果是基本上可以使用三种类型的直流电动机。
    有刷(电机)–这种类型的电机通过使(电流)流经换向器和碳刷组件而在绕线转子(旋转的零件)中产生磁场,因此称为“有刷”。定子(静止部分)的磁场是通过使用绕制的定子励磁绕组或永磁体产生的。通常,有刷直流电动机便宜,体积小且易于控制。
    无刷电动机–这种电动机通过使用附着在其上的永磁体在转子中产生磁场,并通过电子方式实现换向。它们通常比常规的有刷型直流电动机更小,但价格更高,因为它们在定子中使用“霍尔效应”开关来产生所需的定子磁场旋转顺序,但是它们具有更好的转矩/速度特性,效率更高且使用寿命更长比同等拉丝类型。
    伺服电动机–这种电动机基本上是一种有刷直流电动机,带有某种形式的位置反馈控制连接到转子轴。它们连接到PWM型控制器并由其控制,主要用于位置(控制系统)和无线电控制模型。
    普通的直流电动机具有几乎线性的特性,其旋转速度取决于所施加的直流电压,输出转矩
则取决于流经电动机绕组的电流。任何直流电动机的旋转速度可以从每分钟几转(rpm)到每分钟几千转不等,从而使其适用于电子,汽车或机器人应用。通过将它们连接到(变速箱)或齿轮系,可以降低它们的输出速度,同时又可以提高电动机的高速转矩输出。
    “有刷”直流电动机传统的有刷直流电动机基本上由两部分组成,电动机的静止主体称为定子,而内部旋转产生的运动称为直流电动机的转子或“电枢”。
    电机绕制定子是一个电磁电路,由圆形连接在一起的电线圈组成,以产生所需的北极,南极,然后是北极等类型的旋转固定磁场系统,这与交流电机不同。定子磁场以施加的频率连续旋转。在这些励磁线圈中流动的电流称为电动机励磁电流。
    这些形成定子磁场的电磁线圈可以与电动机电枢串联,并联或同时电连接在一起(复合)。串联绕制直流电动机的定子励磁绕组与电枢串联连接。同样,并联绕组直流电动机的定子励磁绕组与电枢并联,如图所示。
    串联和并联直流电动机
   
    直流电机的转子或电枢由载流导体组成,载流导体的一端连接到称为换向器的电隔离铜段。换向器允许在电枢旋转时通过碳刷(因此称为“有刷”电动机)与外部(电源)进行(电气)连接。
    转子建立的磁场试图使其自身与静止的定子磁场对准,从而导致转子沿其轴线旋转,但由于换向延迟而无法使其自身对准。电动机的转速取决于转子磁场的强度,施加在电动机上的电压越大,转子旋转得越快。通过改变施加的直流电压,也可以改变电动机的转速。
    常规(有刷)直流电动机
   
    永磁(PMDC)有刷直流电动机通常比同等绕制定子型直流电动机表亲小得多,并且便宜得多,因为它们没有励磁绕组。在永磁直流(PMDC)电动机中,这些励磁线圈被具有很高磁场能量的强稀土(例如(Cobolt或钕铁硼)磁体代替。