摘自CAD家园
空气弹簧的发展、现状及其概述
一、汽车空气悬架发展历史
在汽车上采用空气弹簧悬架在我国还是一件比较新的事物,但却不是一种新概念。
30年代初,美国法尔斯通轮胎和橡胶公司第一次真正把空气弹簧用于汽车工业。哈维?法尔斯通在其好友亨利?福特一世和托马斯阿瓦?爱迪生的技术支持下,研制出了空气柱形式的空气弹簧悬架系统。于是在1934年就诞生
了AIREDE空气弹簧。
1938年,通用汽车公司对在其客车上安装空气弹簧悬架系统发生兴趣。他们与法尔斯通公司合作,于1944年进行了首轮试验。试验报告结果清楚地揭示了空气悬架系统的内在优越性。经过几年产品研制开发的大量工作之后,终于在1953年开始生产装有空气悬架的客车,这是商用汽车采用空气弹簧的开始。
50年代中叶,固特异轮胎和橡胶公司研制出了一种滚动凸轮式空气弹簧,凸轮在活塞的型面上滚动,从而控制空气弹簧的负载变形关系曲线。
汽车弹簧
由于有这些研究成果和技术发展,今天北美洲公路上行驶的几乎所有客车、绝大多数8级载货车和架车都采用了空气悬架系统。当然,空气悬架控制系统的巨大进步也为空气悬架弹簧的应用起了不小推动作用。
随后不久,空气悬架很快在欧洲发展并盛行起来。但欧洲发展商用汽车空气悬架所走的道路与北美有些不一样。北美所走的路是福特-法尔斯通-爱迪生公司发展的延续。这些钢板弹簧悬架和空气悬架的专业厂家是作为汽车厂家的配套供货商。而在欧洲却是汽车厂家自己发展满足其特殊需要的悬架系统。只由一些零件厂家供
应配套零件如空气弹簧和气动阀等。直到今天,欧洲一些汽车生产厂家都有他们自己的空气悬架设计,而只向一些零部件供应商外购零件。这种不同的发展道路使欧洲的空气悬架设计只适用于某些具体车型,并采用了一些复杂技术,因而使其成本较高。而北美发展的空气悬架系统通用性较强、应用较简单、成本较低。事实上,在过去的10年中,欧洲的不少汽车制造厂家如雷诺、依维柯、福莱纳、梅赛德斯等都发现美国设计的空气悬架系统较为简单,更适合用于他们在北美生产和使用的汽车。
51年前,美国纽威?安柯洛克国际公司(Neway Anchorlok lnternational)成立时即作为一家架车悬架系统的生产厂家,为公路和非公路行驶的重型机车设计和制造钢板弹簧悬架系统。由于纽威在重型车辆市场上取得了成功,后来就向高速公路车辆悬架系统方向发展。35年前,纽威向市场上投放了世界上第一种
实际应用的空气悬架系统。从此以后,纽威开发出一系列空气悬架产品,应用于世界各地的客车、载货车和架车。纽威提供的空气悬架产品约占北美和欧洲用于客车、载货车和架车市场的70%。中国是最新的前沿阵地,正在把钢板弹簧更换为空气悬架弹簧。空气悬架发展的历史经验告诉我们,引入空气悬架的国家一般是首先将其用于客车,随后就向载货车和架车方向发展,中国也会有这样的发展过程。
二、空气悬架概述
悬架是连接车身和车轮之间一切传力装置的总称,主要由弹簧(如钢板弹簧、螺旋弹簧、空气弹簧、扭杆等)、减振器和导向机构三部分组成。当汽车在不同路面上行驶时,由于悬架系统实现了车身和车轮之间的弹性支承,有效地降低了车身与车轮的振动,从而改善了汽车行驶的平顺性和操纵稳定性。
采用空气悬架是提高整车技术水平的关键技术之一,采用空气悬架,汽车的乘坐舒适性、使用性能可以得到很大的提高,从而汽车的其它技术水平也可以相应提高。国家在制定十五计
划时明确强调要提高我国汽车制造水平,空气悬架必将得到广泛的应用和发展。随着我国加入WTO,中国汽车工业必将经受巨大的挑战和机遇,空气悬架汽车可以和外国同类汽车抗衡,增加国产汽车竞争力。随着汽车工业的发展,空气悬架必将显示出它强大的生命力。
空气悬架系统一般由空气弹簧、减振器、导向结构,高度控制阀、空气弹簧辅助装置(如空气压缩机、单
项阀、气路、贮气筒等)组成。如图所示,空气弹簧悬架系统主要由空气弹簧、空气弹簧悬架的减振阻尼器和高度控制阀系统三部分组成。其工作原理为:车体1和转向器2之间的空气弹簧4通过节流空5与附加空气室3沟通。用导管将附加空气室和高度控制阀8连接,高度控制阀固定在车体上,并通过杠杆6和拉杆7与转向架连接,空气经主风缸(贮气筒)引至高度控制阀。
假定空气弹簧上的载荷增加,这时,车体将下降,并且高度控制阀的杠杆在拉杆的作用下按顺时针方向转动,因此与主风缸(贮气筒)连接的高度控制阀的进气阀被打开。这时,空气因压力差而开始流入附加空气室和空气弹簧,一直到车体升高到原来位置为止。于是杠杆恢复到原来的水平位置,并且高度控制阀的进气阀被关闭。
假定空气弹簧上的载荷减少,这时车体将上升,而高度控制阀的杠杆按逆时针方向转动。通往大气的高度控制阀的排气阀被打开,空气从空气弹簧和附加空气室排出,一直到车体下降到原来的位置,并且排气阀被关闭。
所以,在高度控制阀的作用下,空气弹簧的高度可以保持不变。如果阀中再设置一个油压减振器和一个缓冲弹簧,起时间滞后作用,则可以使高度控制阀对动载荷没有反应,只在静载荷变化时才起作用,这样,可以避免车辆在运行时空气的损耗。
电子控制悬架系统
汽车行驶的平顺性和操纵稳定性是衡量悬架性能好坏的主要指标,但二者性能要求又相互排斥。平顺性一般通过车身或车身某各部位的加速度响应来评价,操纵稳定性可借助车轮动载来度量。例如:降低弹簧刚度,可使车身加速度减小,平顺性
变好,但同时会导致车体位移增加,对操纵稳定性产生不良影响;另一方面,增加弹簧刚度会提高操纵稳定性,但也将导致汽车对路面不平度很敏感,是平顺性降低。因此,理想的悬架应在不同的使用条件下具有不同的弹簧刚度和减振器阻尼,既能满足平顺性要求又能够满足操纵稳定性要求。被动悬架因具有固定的悬架刚度和阻尼系数,在结构设计上只能在满足平顺性和操纵稳定性之间进行矛盾折衷,无法达到悬架控制的理想目标。
为了克服传统的被动悬架系统对其性能改善的限制,在现代汽车中采用了电子控制悬架系统,该系统可以根据不同路面条件,不同的簧载质量,不同的行驶速度等来控制悬架系统的刚度,调节减振器阻尼力的的大小,甚至可以调整车身高度,从而使车辆的平顺性和操纵稳定性在各种行驶条件下达到最佳组合。
电子控制悬架系统主要有班主动悬架和主动悬架两种。半主动悬架是指悬架
元件中的弹簧刚度和减振器阻尼系数之一可以根据需要进行调节。为减少执行元件所需的功率,主要采用调节减振器阻尼系数法,只需提供调节控制阀、控制器和反馈调节器所消耗的功率即可。主动悬架是
一种具有做功能力的悬架,通常包括产生力和转矩的主动作动器(液压缸、气缸、伺服电机、电磁铁等)、测量元件(加速度、位移和力传感器等)和反馈控制器等。主动悬架系统需要一个动力源(液压泵或空气压缩机等)为悬架系统提供连续的动力输入。当汽车载荷、行驶速度、路面状况等行驶条件发生变化后,主动悬架系统能自动调整悬架刚度(整车调整和单轮调整),从而能同时满足汽车行驶平顺性和操纵稳定性等各方面的要求。
主动式悬架其设计的基本工作原理就是指在汽车行驶过程中,根据实际需要,
使悬架的基本参数如刚度、阻尼随时调节,从而达到最佳的行驶平顺性和操纵稳定性。例如:在好路面上正常行驶时,希望软一点,在坏路面或起步制动时,希望硬一点;低速时软一点,以满足乘
坐的舒适性,高速时则希望硬一点,以提高操纵稳定性,同时可以根据路面状况随时对车身高度进行控制。比如:当汽车行驶在良好路面上高速行驶时,可使整车高度下降,使空气阻力系数达到最小,降低油耗,增加行驶稳定性,而在较差路面上行驶
时,可让车体高度上升,以改善行驶性能,如提高越野汽车的通过性等。使车身高度不随乘员人数和装载质量的变化而变化。
主动悬架系统能根据车身高度、车速、转向角度及速率、制动等信号,由电子控制单元(ECU)接收这些
信号,发出相应的指令控制悬架执行机构,从而改变悬架系统的刚度、减振器的阻尼力及车身高度等参数,从而使汽车具有良好的乘坐舒适性、操纵稳定性和越野情况下的汽车通过性。
电子控制主动式空气悬架系统,主要有空气压缩机、干燥器、空气电磁阀、车身高度传感器、带有减振器的空气弹簧、悬架控制执行器、悬架控制选择开关以及ECU等组成。空气压缩机由直流电机驱动产生压缩空气,压缩空气经干燥器干燥后,有空气管道经空气电磁阀送至空气弹簧的主气室。如图所示:当车身需要降低
时,ECU控制电磁阀使空气弹簧主气室中压缩空气排到大气中去,空气弹簧压缩,车
身降低;当车身需要升高时,ECU控制空气电磁阀使压缩空气进入空气弹簧的主气室,使空气弹簧伸长,车身升高。
在空气弹簧的主、辅气室之间有一连通阀,空气弹簧的上部装有悬架控制执行器。ECU根据各传感器输出信号,控制悬架执行器,一方面使空气悬架主、辅气室之间的连通阀发生改变,使主、辅气室之间的气体流量发生变化,因此改变悬架的弹簧刚度;另一方面,执行器驱动减振器的阻尼调节杆,改变减振器的阻尼力。在主动使空气悬架系统中车身高度、弹簧刚度可以同时得到控制,具体数值由ECU根据当时的运行条件和驾驶员选定的控制方式决定。以车身控制高度来说:通过车身高度传感器,将车身高度的变化转变为电信号,并输入电子控制单元(ECU)。ECU接收左右
前轮和左后轮三个车身传感器发出的车高信号,经过处理后对执行器发出指令,对车身高度进行调整,之所以只装三个,其原因是三点确定一个平面,如多于三个,则会出现调整干涉现象。
四、空气悬架的弹性元件──空气弹簧