铅酸蓄电池是一种渐变失效性产品,在正常使用过程中,由于极板要随着蓄电池反复充、放电而不断地膨胀和收缩,极板上的活性物质会自行脱落。不过在正常情况下,这种活性物质的脱落是缓慢的,对蓄电池的影响不大,但如果使用不当,则会加快活性物质的脱落而成为故障,使蓄电池早期损坏。因此,了解蓄电池极板的结构特点及其活性物质脱落的原因,减缓其脱落的速度,对延长蓄电池的使用寿命是十分必要的。
1.正、负极板的功用结构及化成
极板是蓄电池的基本部件,由它接受充入的电能和向外释放电能。极板分正极板和负极板两
种,铅蓄电池极板是以铅锑合金为栅架如图1,再在其上涂以活性物质而成的。
正极板的活性物质为二氧化铅,呈深棕,负极板的活性物质为纯铅,呈青灰。活性物质具有多孔性,电解液能够渗透到极板内部,因而增大了接触面积,使较多的活性物质参加化学反应,提高蓄电池的容量。但活性物质的机械强度较差,且在放电后生成硫酸铅,导电性也降低了,因此用铅锑合金作栅架,就可以在保证活性物质多孔性的情况下,又能提高它的强度和导电性。
图4
1.极柱;
2.极连接板;
3.极板
为了提高容量,蓄电池每个单格,均按所需容量,配以适当片数的正、负极板,同时分别焊成正、负极板组,并用极柱引出如图2。由于正极板的活性物质二氧化铅的机械强度比负极板的纯铅差,放电后变成硫酸铅时,体积要增大,正极板机械强度较差,而化学反应又较强烈,所以每一单格电池中,负极板总比正极板多一片,这样就可以保证装合后每个正极板都处于两片负极板之间,不会因为两面放电不均匀,而形成拱曲使活性物质大量脱落。因为每一单格电池中负极板比正极板多一片,所以单格电池的容量是以正极板片数的多少来决定的,单格蓄电池中极板数目越多,极板面积越大,多孔性越好,则同时与硫酸起化学反应的活性物质越多,所以容量就越大。但极板片数无论有多少,因为正、负极板组是并联关系,故电压仍为2伏。例如:解放牌汽车蓄电池,每单格极板为13片,其中正极板为6片,每片正极板的额定容量为14安时,单格容量则为14×6=84安时。正、负极板组装合后(如图3),各单格电池的正负极板组用铅质连接板互相串联,二端留出两个极柱,以便连接引出线。为便于识别正负极。极柱上常标有“+”、“-”号或在正极柱上涂以红漆。
蓄电池极板一般为单数,至少在三片以上。安装时,将正负极板组相互嵌合,中间插入隔板,
交错地排列放置的,如图4所示,就成了单格电池。在每个单格电池中,负极板的数量总是比正极板要
多一片:例如东风EQ1090汽车所用的6-Q-105型蓄电池,单格电池组共15片极板,其中正极板7片,负极板8片。正极板都处在负极板之间,最外面2片都是负极板。因为正极板活性物质较疏松,机械强度低,这样把正极板都夹在负极板中间,使其两侧放电均匀,保持正极板工作时不易因活性物质膨胀而翘曲,造成活性物质脱落。在极板组合时,最外侧的两块都是负极板,它称为边负极板,边负极板只有一面与正极板起化学作用,所以一般边负极板的厚度仅为中间负极板厚度的一半。由若干片极板焊接成的极,放在容器中的装置方式,一般可分为三种:一是挂式:开口式蓄电池的极板挂在玻璃缸的缸
口上(或铅衬木槽的玻璃挂板上);二是垂吊式:封闲式小型蓄电池的极吊镶在电池槽盖上,利用极的自重,经软胶垫与容器密闭;三是鞍式:一般移动型蓄电池和中型以上防酸隔爆式蓄电池的极座落在容器内的鞍子上,电池周围用封口剂封闲。但也有采用吊挂与鞍子并用的,基本上是垂吊式,但容器内也备有小鞍子。
同极性极板并联焊接,目前比较常见的方法是手工气焊。对于整体蓄电池槽、整体蓄电池盖,使用了先进的铸焊机,此工艺取消了传统的极桩铸造以及极桩与极板连接的焊接工序。近年来,单格电池间的外连接方式,逐渐被桥式连接和穿壁连接的内连接方式所替代。用对焊装置焊接并检验,可自动鉴别反极、短路的产品,并予以清除出来。汽车蓄电池
蓄电池在充电与放电过程中,电能和化学能的相互转换是依靠极板上活性物质和电解液中疏酸的化学反
应来实现的。负极的活性物质为海绵状铅(Pb),电位为负,其本身为还原剂,在成流反应(即生成电流时进行的氧化还原反应)中被氧化。正极的活性物质为二氧化铅(PbO2),电位为正,其本身为氧化剂,在成流反应中被还原。从表面看来,化成后的正极(极板)为暗棕,负极(极板)为深灰。在放电终了时,正、负极的颜变淡。因此,可以根据颜区别出正、负极板。在一个铅蓄电池内,其同极性的极板片数为两片以上者,必须使用焊接工具。用铅锑合金焊条把它们焊接在一起。这样焊接在一起的同极性的极板,称为“极板”。对于型号规格不同的启动用铅蓄电池,其极板的极板片数的多少,随其容量大小而异。容量大的蓄电池,极板的极板片数多,容量小的则少(这里指的是同型号极板,即尺寸、材料相同的极板)。
铅蓄电池的极板,依其构造和活性物质化成(又称形成)方法,可以分成四类:涂膏式极板,管式极板,化成式极板。半化成式极板。所谓化成就是经过干燥后的正、负极板(也叫生极板),间隔地放在盛有稀硫酸的容器中,正极板接入电源的正极,负极板接入电源的负极,经过规定时间的充电以后,正极板上的铅膏绝大部分变为二氧化铅,负极板上的铅膏绝大部分变为海绵状铅。这个过程叫做化成。
2.极板活性物质的主要原料
蓄电池正负极板上的活性物质分别充填在铅锑合金铸成的栅架上,铅锑合金中,铅占94%,锑占6%,加入少量的锑是为了提高栅架的机械强度并改善浇铸性能。但是铅锑合金
耐电化学腐蚀性能较差,含锑不利之处有几个方面:水分解电压降低,使电池中的水消耗量大,向蓄电池中加水的维护量大;随锑含量的增加,板栅电阻增加,在高倍率放电时不利;腐蚀速率随锑含量的增加而加速,因为锑容易从正极板栅架中解析出来, 引起板栅膨胀损坏。在要求高倍率放电和提高重量比能量,而采用薄形极板时,高锑含量板栅势必导致使用寿命的降低,因此,采用低锑合金就十分重要了。目前板栅含锑量大约为2~3%。
铅粉是极板活性物质的主要原料,一般采用在低于铅熔点的温度下进行研磨氧化的方法生产,将铅块送入滚筒中,当滚筒旋转时,铅块摩擦撞击,使铅块表面生成氧化铅,氧化层
被破坏而成粉状铅,并从铅块表面脱落。然后在铅粉中加入稀疏酸和各种添加剂,调和成铅膏。
添加剂分负极添加剂和正极添加剂。
负极添加剂。在充放电循环过程中,负极活性物质海绵状纯铅有容积缩小的趋势,使孔率降低,活性表面缩小,降低蓄电池的容量。为此,在负极活性物质中加入膨胀剂。
无机膨胀剂有:一是硫酸钡。充电时,防止负极的收缩;放电时,推迟负极的钝化,从而提高负极容量;二是炭黑。可以提高负极活性物质的分散性和导电性。
有机膨胀剂有:一是腐殖酸。它吸附在铅晶体表面,使其保持高度分散性,显著改善了低温性能;二是
木质素磺酸盐。可以减少负极的收缩和钝化现象,显著降低自放电,提高大电流的放电特性。
正极添加剂。在板栅合金中加入0.1%~0.2%的砷,可减缓板栅的腐蚀速度,提高其硬度与机械强度,增强其抗变形能力,延长蓄电池的使用寿命。故目前国内外已使用锑砷(Pb-Sb-As)合金作板栅;玻璃丝管式正极板活性物质中加入一定量的活性炭,可以提高电极孔率与导电性,也提高了蓄电池容量;正极活性物质中加入磷酸盐及硅化物,可以使容量增加10%左右;铅膏中加入合成纤维,例如加入聚丙烯纤维,丙烯睛-氯乙烯共聚物纤维,可以增加极板强度,减少正极活性物质脱落,延长蓄电池使用寿命。将铅膏涂在栅架上,极板固化后,铅膏中的氧化铅和碱性硫酸铅通过电化学反应,正极板转化成棕红的二氧化铅,负极板转化成青灰的海绵状铅。经验证明,化学方法制备的二氧化铅和铅,用于蓄电池时,只能给出很小的利用率;而用电化学方法形成的活性物质可以保证蓄电池的良好电特性和较长的循环寿命。
铅蓄电池正、负极板活性物质的利用率因素:活性物质利用率与极板的厚薄、极板片数多少、容量的大小有关,一定体积的蓄电池,容量越大,利用率越高。活性物质利用率与极板的孔率大小也有直接关系,极板孔率大,与电解液的接触面积大,电化学极化减小、内阻小,蓄电池端电压下降速度慢,容量提高,利用率亦高。活性物质利用率还与其真实表面积大小有关。活性物质颗粒小,表面积大,电极的反应面积增大,故容量增大,利用率提高。一般情况下,负极板比正极板利用率高23%。为了提高正极板的利用率,可通过添加活性剂的办法来促进。
3.极板的活性物质性能特点
板栅式极板的活性物质图5 放射式板栅
。汽车蓄电池传统的板栅结构,一般采用矩形结构。汇集电流的极耳位于板栅的一侧,板栅的横筋条密而细,竖筋条疏而粗,这些筋条都是与四条边垂直的。近年来,出于对高倍率放电的考虑,有减小板栅高度、极耳靠中、竖筋条呈倾斜并直接指向极耳的辐射状的趋势。这些措施缩短了电流的流程,从而减小了极板电压降的损失,提高了蓄电池的放电性能。放射式板栅见图5。
出于对使用期限的考虑,正极活性物质脱落和板栅腐蚀通常是决定蓄电池使用期限的主要原因,因此正极板栅设计得比负极板栅厚,负极板栅厚度一般是正极板栅厚度的70%~80%。近年来我国汽车蓄电池负极板的厚度为1.6~1.8mm,也有薄至1.2~1.4mm的;正极板的厚度为2.2~2.4mm,也有薄至1.6~1.8mm的。薄形极板的使用能改善汽车的启动性能,提高蓄电池的比能量。为了增大蓄电池的容量,通常将多片正极板(4~13片)和多片负极板(5~14片)分别并联,再用横板焊接,组成正极板组和负级板组。板栅式极板