我国涡扇10航空发动机内幕
八十年代初期,中国航空研究院606所(中国航空工业第一集团公司沈阳发动机设计研究所)因七十年代上马的歼九、歼十三、强六、大型运输机等项目的纷纷下马,与之配套的研发长达二十年的涡扇六系列发动机也因无装配对象被迫下马,令人扼腕,而此时中国在航空动力方面与世界发达国家的差距拉到二十年之上。面对中国航空界的严峻局面,国家于八十年代中期决定发展新一代大推力涡扇发动机,这就是涡扇10系列发动机。依据装配对象的不同,涡扇10系列有涡扇10、涡扇10A、涡扇10B、涡扇10C、涡扇10D等型号,其中涡扇10A是专门为中国为赶超世界先进水平而上马的新歼配套的。中国为加快发展涡扇 10系列发动机,采取两条腿走路方针。一是引进国外成熟的核心机技术。中美关系改善的八十年代,中国从美国进口了与F100同级的航改陆用燃汽轮机,这是涡扇10A核心机的重要技术来源之一;二是自研改进。中国充分运用当时正在进行的高推预研部分成果(如92年试车成功的624所中推核心机技术,性能要求全面超过F404),对引进的核心机加以改进,使核心机技术与美国原型机发生了较大变化,性能大为增强。这里说句题外话,网上有人说涡扇10是在F404 基础上放大而成,性能直逼F414,似乎也不无道理,因为核心机技术来源较多,不能单纯说由那一家发展而来
结构:
涡扇10/10A是一种采用三级风扇,九级整流,一级高压,一级低压共十二级,单级高效高功高低压涡轮,即所谓的3+9+1+1结构结构的大推力高推重比低涵道比先进发动机。黎明在研制该发动机机时成功地采用了跨音速风扇;气冷高温叶片,电子束焊整体风扇转子,钛合金精铸中介机匣;,挤压油膜轴承,刷式密封,高能点火电嘴,气芯式加力燃油泵,带可变弯度的整流叶片,收敛扩散随口,高压机匣处理以及整机单元体设计等先进技术。涡扇10A的制造工艺与 F100AL-31F相似,十分先进,外涵机匣利用中推部分先进技术采用高性能的聚酰亚树脂复合材料,刷式密封,机匣所用材料与美制F414相似,电子束焊接整体涡轮叶盘,超塑成形/扩散连接四层风扇导流叶片,钛合金宽弦风扇空心叶片,第三代镍基单晶高温合金,短环燃烧室,收扩式喷口,全权限电子控制技术,结构完整性设计,发动机制造和设计十分先进,不亚于世界同时期先进水平。其中涡轮叶片采用定向凝固高温合金先进材料,无余且精铸和数控激光打孔等先进工艺,以及对流、前缘撞击加气膜"三合一"?的多孔回流复合冷却先进技术,使涡轮叶片的冷却效果提高了二倍,而且耐5000次热冲击试验无裂纹发生。涡扇 10的涡轮叶片虽然是定向结晶的DZ125,但采用了我国独创的低偏析技术,其综合性能可以和第一代的单晶高温合金媲美。涡扇10的性能为:空气进量 100kg/sec,涡轮前温度为1700-1750k,涡扇10加力风扇的性能的一些主要数据为如下:高、低转子的转速分转别是1
3 kr/min16.2 kr/min,涵道比0.5,總增压比30323 m/s334 m/s,空氣流量M=100 kg/s,主燃烧室及加力燃烧室供油量分别为2.6 kg/s,2.85 kg/s。最大推力73.5kn,加力最大推力110kn。涡扇10装有无锡航空发动机研究所研制的FADEC
涡扇10涡轮装置DD3镍基单晶高温合金涡轮叶片是确定的事,7.5末期的DZ-4是定向凝固高温合金。定向凝固高温合金藉由柱状晶的同方向凝固,将细长的柱状晶朝凝固方向平行涡轮叶片运转产生的离心力。但其最大缺点是,涡轮叶片有中空部分,某些部位壁薄,在凝固时柱状界面之间容易产生裂缝,使得制造上受到限制。至于镍基单晶合金,在镍的Gamma固溶态中,有大量分散结晶构造稍为不同的Gamma基本态,只要将这种结晶单晶化,在定向凝固合金中,增加 Gamma基本态,提高高温强度。镍基单晶合金基本上消除定向凝固高温合金的限制。F119的涡轮叶片是用第三代单晶作的,DD3可能是第一代。
由于运用了高推预研的先进成果,涡扇10A的三级低压压比甚至比AL—31F的四级低压部分还要高,九级高压,压比12,效率85%,总压比、效率、喘震余度高于AL—31F,总压比与F110相似,达30以上,涡轮前温度为1747K,推质比为7.5(国际标准,非俄式标准),全加力推力为 13200千克,重量比AL—31F要轻。相比之下,AL—31F涡轮前温度只有1665K
推质比7.1(国际标准,俄式标准为8.17),全加力推力 12500千克;F110的涡轮前温度为1750K,推质比为7.57(国际标准),全加力推力为13227千克。总体比较,涡扇10A性能要远高于AL —31F,与F110相似。其定型时间为2003年,服役时间为2005年。
先说明一部高性能涡轮扇喷射引擎应俱备的条件:
目前军用涡轮扇喷射引擎几乎都是双轴(dual-pool stage),有四大部分:(1)双轴系压缩机(dual-axial compressor)由低压压缩机(LPC)及高压压缩机(HPC)组成、(2)燃烧机、(3)双轴系涡轮,即高压涡轮(HPT)及低压涡轮(LPT),(4)后燃器。
设计高性能涡轮扇喷射引擎必须要注重以下三大问题:
1、避免压缩机叶片因转速过,快造成压缩机后部各级堆积空气,或进气道气流畸变而导致的失速(compressor surge),故须有各种纠正措施。举例说明,J79-GE-15涡喷发动机依赖调整高低二级压缩机转速比,让压缩机在任何情况下能够匹配。当后部阻塞时,应用前6级可变倾角静子叶片,调整角度以疏导气流。气流依序通过2级风扇、6级低压压缩机及7级高压压缩机,获得总压比17。千万记住,如何以最少的级数获得高压缩比,才是判断喷射发动机设计技术的重要指标。
2、减轻压缩机重量,以使离心力及大量施功于空气所生的机械负荷,不超过制造压缩机叶片所用合金所能承受的最大的机械强度。故前部压缩机叶片可用钛合金,后部压缩机叶片因温度升高必须用其他耐高温合金。
3、使涡轮工作更有效,以带动压缩机更快旋转。所以必须要产生让涡轮运转更快的高温气体,同时减轻涡轮自身重量。于是就须要提高涡轮进气温度,及应用高强度及更耐来制造叶片。对涡轮叶片性能影响最大的是高温合金的铸造技术。当然那根涡轮轴的加工精度也很重要,否则摩擦热会烧毁引擎。
先谈一些技术指标的意义
1、旁通比(BPR= 旁通的气体质量 / 流进核心机的气体质量。高BPR意味著更少的空气流过核心机,所以提高总压缩比就越容易,这是涡扇喷射引擎的基本想法。根据推进效率,涡轮扇引擎在亚音速飞行中,BPR越大,燃油耗油率越低。另一方面,低BPR说明更多的空气流过核心机,在超音速飞行中,在加力状态下,低BPR能使单位流量推力增加,燃油耗油率降低。
2、总压缩比(TPR = 压气机后出口压力 / 压气机前进口压力。高总压缩比使压气机和进气装置的调节成为必要,且越来越复杂。高总压缩比也使涡扇引擎的压气机稳定性裕度面临极大考验,压力越大越容易造成失速。所以远程轰炸机或民航机因为不须作激烈的机动,不需极复杂的调节装置,可由提高TPR,来降低燃油耗油率,增加航程。但对于战斗机,提高TPR 必须有节制。例如F119TPR = 25EJ200 TPR = 26B 1引擎的TPR > 30F100-PW-229受限于基本设计,将TPR从原来的25提高到34,推力增加但重量也增加,推重比不变。与其一味提高TPR,不如以最少的压缩级数来达到所需的压缩比。
3、前涡轮进气温度(TIT),战机引擎的发展是通过提高TPRTIT,来增加推力,降低燃油耗油率。TIT的提高,加上良好涡轮效率,高温气体足够有效带动涡轮的运动,所以涡轮级数可降低。在研制时,AL-31F超重,将均为二级的高低涡轮,各改为单级,导致涡轮效率比设计值低4%,通过提高TIT1350C1392C来补偿。BPR的选择与TIT的极限有密切关系,在相同的TIT限制下,例如1600~1700K的极限下,战斗机的 BPR应选择0.15~0.5之间,TPR = 20~30
由于军用引擎设计参数不容易取得,但通过几个特徵约可一窥全貌:
推重比(T/W),TITTPRBPR
第一代涡轮喷射引擎的特征(用于Mig-17Mig-19):TIT ~ 1150KTPR = 4~6南阳水氢发动机
第二代涡轮喷射引擎的特征(用于Mig-21):TIT = 1200~1250KTPR = 8~10
第三代涡轮喷射引擎的特征(用于Mig-23):TIT = 1400~1450KTPR = 13~15T/W = 5.5~6.5
第四代涡扇喷射引擎的特征(用于F-16Su-27):TIT = 1600~1700KTPR =20~25BPR ~ 0.6T/W ~8
WS-6G(在1982年试验达设计指标)的参数:TIT = 1473KTPR = ~19BPR = 0.62T/W ~7。可见WS-6G的性能劣于第四代涡扇喷射引擎,但比第三代涡轮喷射引擎要好。WS-9BPR=0.78TPR=16.8 compressor: 4 low pressure + 12 high pressure)。从设计指标看来,WS-6GWS-9先进。与西方第四代涡扇喷射引擎相比,WS-6G设计之主要差距,表现在压缩机效率与涡轮叶片合金的性能。
WS-6G是典型缺乏市场观念,中央计划经济的产物。上面一声令下,科研人员只负责把东西研制出来。首先最大138kn推力量级本就与现实不符合,WS-6G 的最大推力应该是90~110kn量级才是,无论是单发或双发都适合。
发动机的好坏对飞行性能有极大影响。高BPR发动机高空高速性能不好,F100-PW-100BPR0.71,到了F100-PW-129 BPR~0.6,到了F100-PW-229其各部件得到强化,BPR变成0.33,总压比达到34,改善高空高速性能及降低耗油率。以飞机持续转弯率来说,与速度成反比,与(n**2-1)**0.5成正比,n为过载因子。提高过载必须(1)低翼载,(2)高推力,(3)低零升阻力(简言之,非升力产生的阻力)与低诱导组力(因升力产生的阻力)。因为发动机推力与高度、速度有关,飞机能否飞出大过载,实际上受限于发动机的高空高速性能,这在超音速机动中尤其重要。
涡扇10性能如何?对其设计可说一无所知。但燃气涡轮研究院有几篇研究报告,提到三级压气机,应指LPC。至于级压缩比未知,608所研制的 WJ9用来取代Y-12P&WPT-6A-27涡桨发动机,其单级轴流压缩比是1.51。以此水准计算,三级LPC可获得3.44的压缩比, AL-31F四级LPC获得3.6(级压缩比1.377),印度GTX-35VS三级LPC3.2(级压缩比1.47
4)。各位认为合理吗?叶片的三维黏流体设计,631所与西北工业大学研究水准不差。GTX-35VS3 LPC + 5HPC)的TPR~21AL-31FTPR~244 LPC + 9HPC),F100-PW-100TPR~253 LPC + 10 HPC)。最合理的推论是涡扇10TPR约为在25。至于级数。
涡扇10装有无锡航空发动机研究所研制的FADECAL-31F为机械液压系统,F100-PW-129装有FADEC
燃烧器确定是短环喷雾式,与WP-13比,其长度可减少1/2
单晶涡轮叶片的意义是能忍受更高的前涡轮进气温度。也就是说,单级高压涡轮与单级低压涡轮就足以产生足够的效率,推动压气机的运转。而不需要像 F100-PW-100一般,用二级高低涡轮。F100的后续系列因受限于基本设计,无法更动,只能不断完善部件效率,提高性能。印度GTX-35VS也是采单级高低涡轮,其叶片是用定向凝固高温合金,后续发展型才用单晶涡轮叶片。
涡扇10的旁通比,如果TPR25,那么旁通比约在0.50.6之间。更低的旁通比,表示要压缩更多的空气,难度越大,除非增加级数。换言之涡扇10的高空高速性能比AL-31F有提高。
涡扇10的推重比高于8应该没问题,与AL-31F比,因为涡扇10有比AL-31F更有效的压缩机,单晶涡轮叶片比AL-31F的涡轮叶片更能忍受高温,引擎控制系统也比较先进。总之,涡扇10的压缩机用多少级来产生多少的总压比是判断性能的关键。