实际问题与二元一次方程组题型归纳
知识点一:列方程组解应用题的基本思想
列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.
知识点二:列方程组解应用题中常用的基本等量关系
1.行程问题:
(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是:两者的行程差=开始时两者相距的路程; ;;
(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;
②船在静水中的速度-水速=船的逆水速度;
③顺水速度-逆水速度=2×水速。
知识点一:列方程组解应用题的基本思想
列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.
知识点二:列方程组解应用题中常用的基本等量关系
1.行程问题:
(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是:两者的行程差=开始时两者相距的路程; ;;
(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;
②船在静水中的速度-水速=船的逆水速度;
③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2.工程问题:工作效率×工作时间=工作量.
3.商品销售利润问题:
(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;
2.工程问题:工作效率×工作时间=工作量.
3.商品销售利润问题:
(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;
(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;
注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十)
4.储蓄问题:
(1)基本概念
①本金:顾客存入银行的钱叫做本金。 ②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。 ④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。 ⑥利息税:利息的税款叫做利息税。
(2)基本关系式
①利息=本金×利率×期数
②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数)
③利息税=利息×利息税率=本金×利率×期数×利息税率。
④税后利息=利息× (1-利息税率) ⑤年利率=月利率×12 ⑥。
注意:免税利息=利息
5.配套问题:
注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十)
4.储蓄问题:
(1)基本概念
①本金:顾客存入银行的钱叫做本金。 ②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。 ④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。 ⑥利息税:利息的税款叫做利息税。
(2)基本关系式
①利息=本金×利率×期数
②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数)
③利息税=利息×利息税率=本金×利率×期数×利息税率。
④税后利息=利息× (1-利息税率) ⑤年利率=月利率×12 ⑥。
注意:免税利息=利息
5.配套问题:
解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。
6.增长率问题:
解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;
原量×(1-减少率)=减少后的量.
7.和差倍分问题:
解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.
8.数字问题:
解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字
9.浓度问题:溶液质量×浓度=溶质质量.
10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式
11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的
12.优化方案问题:
在解决问题时,常常需合理安排。需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票
6.增长率问题:
解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;
原量×(1-减少率)=减少后的量.
7.和差倍分问题:
解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.
8.数字问题:
解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字
9.浓度问题:溶液质量×浓度=溶质质量.
10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式
11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的
12.优化方案问题:
在解决问题时,常常需合理安排。需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票
等,一般都要运用方程解答,得出最佳方案。
注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。
知识点三:列二元一次方程组解应用题的一般步骤
利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:
1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;
3.出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.
要点诠释:
(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得 的结果是否合理,不符合题意的解应该舍去;
(2)“设”、“答”两步,都要写清单位名称;
(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.
(4)列方程组解应用题应注意的问题
①弄清各种题型中基本量之间的关系; ②审题时,注意从文字,图表中获得有关信息; ③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列 方程组与解方程组时,不要带单位;④
注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。
知识点三:列二元一次方程组解应用题的一般步骤
利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:
1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;
3.出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.
要点诠释:
(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得 的结果是否合理,不符合题意的解应该舍去;
(2)“设”、“答”两步,都要写清单位名称;
(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.
(4)列方程组解应用题应注意的问题
①弄清各种题型中基本量之间的关系; ②审题时,注意从文字,图表中获得有关信息; ③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列 方程组与解方程组时,不要带单位;④
正确书写速度单位,避免与路程单位混淆; ⑤在寻等量关系时,应注意挖掘隐含的条件; ⑥列方程组解应用题一定要注意检验。
分类练习:
分类练习:
类型一:列二元一次方程组解决——行程问题
1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?
解:设汽车速度为x km/h,拖拉机速度为y km/h,根据题意得
(x+y)4/3=160;3/2y=1/2x,解得x=90,y=30
此时汽车走过的路程为(4/3+1/2)*90=165km;拖拉机走过得路程为(4/3+3/2)*30=85km
答:汽车走过的路程为165km,拖拉机走过的路程为85km。
【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;
如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?
解:设甲的速度为x km/h,乙的速度为y km/h,根据题意得
解:设甲的速度为x km/h,乙的速度为y km/h,根据题意得
2.5(x+y)=36-2x;3(x+y)=36-2y
解得x=6,y=3.6
答:甲的速度为6km/h,乙的速度为3.6 km/h
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设船在静水中的速度为x km/h,水流速度为y km/h,根据题意得
(x+y)14=280;(x-y)20=280
解得x=17,y=3
答:船在静水中的速度为17 km/h,水流速度为3 km/h
类型二:列二元一次方程组解决——工程问题
2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?
(1)解:设甲工作一天需x元,乙工作一天需y元,根据题意得
2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?
(1)解:设甲工作一天需x元,乙工作一天需y元,根据题意得
(x+y)8=3520;6x+12y=3480 解得x=300,y=140
答:甲、乙两组工作一天,应各付300元,140元
(2)300*12=3600(元);140*24=3360(元) 3600>3360 答:单独请乙组,商店所付费用最少
【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.
解:设甲每周需要x万元,乙每周需要y万元,根据题意得
6(x+y)=5.2;4x+9y=4.8 解得x=0.6,y=4/15
设甲公司单独x周完成,乙公司单独y周完成,根据题意得
6/x+6/y=1;4/x+9/y=1 解得1/x=1/10;1/y=1/15,即x=10,y=15
所以甲单独做总费用为0.6*10=6万元,乙单独做总费用为4/15 *15=4万元
答:从节约开支得角度考虑,小明家应选乙公司
类型三:列二元一次方程组解决——商品销售利润问题
3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?
3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?
解:设甲进价为x元,乙进价为y元,根据题意得
5/100x+4/100y=46;4/100x+5/100y=44
解得x=600,y=400
答:甲进价为600元,乙进价为400元
【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?
解:设甲蔬菜种植x亩,乙蔬菜种植y亩,根据题意得
x+y=10;2000x+1500y=18000
解:设甲蔬菜种植x亩,乙蔬菜种植y亩,根据题意得
x+y=10;2000x+1500y=18000
解得x=6,y=4
答:甲蔬菜种植6亩,乙蔬菜种植4亩
【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:
A | B | |
进价(元/件) | 1200 | 1000 |
售价(元/件) | 1380 | 1200 |
(注:获利 = 售价 — 进价)求该商场购进A、B两种商品各多少件;
解:设甲商品x件,乙商品y件,根据题意得
1200x+1000y=360000;1380x+1200y=420000
解得x=200,y=120
答:该商场购进A商品200件,B商品120件
类型四:列二元一次方程组解决——银行储蓄问题
4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)
解:设第一种存x元,第二种存y元,根据题意得
x+y=2000;x(1+2.25%)+y(1+2.25%)-2.25%y*20%=2042.75
4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)
解:设第一种存x元,第二种存y元,根据题意得
x+y=2000;x(1+2.25%)+y(1+2.25%)-2.25%y*20%=2042.75
发布评论