摘 要 全钒液流电池电解液为单一钒元素各价态离子的电解质溶液,避免了不同元素离子通过膜渗透产生的交叉污染,电池循环次数高,使用寿命长。全钒液流电池非常适合电站削峰填谷、新能源发电储能和偏远地区供电等。但受钒离子溶解度的限制,全钒液流电池电解液浓度相对较低,导致电池能量密度较低、电解液储罐体积大,钒电池更适用于静态储能系统,而较难应用于电动汽车、电子产品等领域,而电解液成本高也限制了其大规模商业化应用。本工作基于各价态钒离子在不同酸度和温度条件下在传统H2SO4溶液中的溶解性能,总结了通过引入添加剂、改变支撑电解质和构建混合相电解液以提高钒电解液浓度和稳定性的方法及研究现状,介绍了不同种类添加剂在高温下稳定V(V)的作用机理,不同酸作为支撑电解质对V的溶解性及电解液电化学性能的影响,以及混合相电解液对于稳定电解液的内在机制。重点分析了最近研究报道的新型高浓度钒电解液,展望了大幅提高钒电解液浓度的可行性及研发方向。综合分析表明,改变传统H2SO4支撑电解质,如HCl/H2SO4等体系的开发,是大幅提高钒电解液浓度、增大电池能量密度比较有前景的研发方向。
关键词 全钒液流电池;钒电解液;高浓度;稳定性;储能
1988年澳大利亚新南威尔士大学(UNSW) 研究组注册了全钒氧化还原液流电池(VRFB)专利,标志着全钒液流电池的成功开发。电池电解液中正、负极电解质由单一钒元素不同价态离子的溶液组成,正极电对为VO2+/VO2+,负极电对为V3+/V2+,避免了不同元素离子通过膜渗透产生的交叉污染。因此,理论上钒电解液可通
过电荷调整进行无限次循环使用。VRFB循环次数比其他液流电池具有明显优势,得到了一定程度的商业化应用,主要用于电网削峰填谷、新能源电站储能、偏远地区应急供电等。然而,受不同价态钒离子溶解度和五价钒离子高温下易水解的限制,钒电解液浓度普遍较低,导致VRFB能量密度较低。目前商业运行钒电解液多为溶解1.5~1.8 mol/L钒的H2SO4(3~5 mol/L)溶液,能量密度一般为25 Wh/L,而Zn的混合液流电池均达到70 Wh/L。北京低碳清洁能源研究院与清华大学合作研发的全液体有机液流电池能量密度更是达到了223 Wh/L,几乎接近能量密度高的固体锂电池。另外,钒作为稀有金属,市场价格较高、波动大,大型全钒液流电池中电解液成本占50%以上,极大限制了VRFB更大规模的商业应用。制备高浓度钒电解液以增大电池能量密度和大幅降低投资成本,是增强VRFB商业化竞争力的关键,也是目前研究热点之一。近年来,研究人员对采用稳定剂/添加剂以及改变支撑电解质以提高电解液浓度的方法进行了广泛深入的研究,从不同侧面进行了详细的综述,指导了高性能电解液的开发和应用。本工作结合不同价态钒离子在传统H2SO4支撑电解质中的溶解性能,进一步深入探讨分析了各种提高钒电解液浓度和稳定性方法的可行性及局限性,并综述了最近几年研究报道的新成果,展望了未来研究开发的方向。
1 钒离子在硫酸溶液中的性质
硫酸为常用的无机酸,具有稳定性好、挥发性弱和价格低等优势。Skyllas-Kazacos研究组优选硫酸为VRFB
电解液的支撑溶液,目前商业化钒电解液也均以硫酸为支撑溶液。在电池正极,高价态的V(V)/V(IV)以含氧离子VO2+和VO2+的形式存在,VO2+易水解生成V2O5沉淀,该沉淀难溶解恢复,造成电池不可逆,因此,维持正极电解液中V(V)的稳定性尤为重要。早期UNSW研究人员优化了电解液组成,即在3 mol/L H2SO4中溶解2.0 mol/L的V,但当温度达到40 ℃以上时,V(V)不稳定,有沉淀析出。Carvalho等在5 mol/L H2SO4溶液中电解氧化VOSO4制备了3.2 mol/L V(V),60 ℃下30天后V的浓度逐步降低到2.0 mol/L,溶液中有大量固体产生,分析固体沉淀物为部分水合的非晶化合物V2O5·0.26H2O。温度和酸度对V(V)稳定性影响较大。当温度高于40 ℃时,大于2 mol/L的V(V)有明显的水解沉淀;而30 ℃以下,即使3 mol/L V(V)水解也非常有限。酸度能够抑制VO2+离子的水解反应,总SO42-/HSO4-浓度为5.0 mol/L时,50 ℃、40 ℃和30 ℃下V(V)稳定存在的浓度分别为:1.2、1.4和2.4 mol/L;而当SO42-/HSO4-浓度增大到6.0 mol/L时,各温度下V(V)浓度分别增大到:1.8、2.8、3.0 mol/L(游离H2SO4浓度等于总酸根浓度减去V浓度)。美国太平洋西北国立实验室(PNNL)研究报道,酸溶液中水分子与强路易斯酸的高价V(V)离子共享电子引发一个脱质子过程,形成多聚钒氧体[如n(V-OH)→(V-O-V)n+nH2O],最后形成V2O5沉淀。研究结果表明,靠提高酸度消除V(V)水解非常困难,但可以通过引入合适的阴离子竞争V(V)路易斯酸中心与水共享电子,从而显著抑制V(V)的水解,提高V(V)的稳定性。还必须指出,高浓度V(V)溶液的制备通常不采用溶解V2O5的方式,这是由于通过V2O5溶解得到的V(V)溶液浓度可能远低于报道的电解液浓度。报道采用3 mol/L H2SO4溶解V2O5
后,30 ℃下V(V)的平衡浓度仅有0.6 mol/L,结果与研究组的报道一致,这可能是多聚的V-O-V在溶解过程中破坏不完全造成的。因此,高浓度钒电解液的制备,需通过还原低价的V(IV)来实现。正极电解液中VO2+是几种价态中最稳定的离子,电解液的制备也多用V(IV)为前体,通过电解氧化-还原制得。VO2+在H2SO4溶液中有一定饱和度,在过饱和状态下会形成VOSO4结晶析出。系统测定了V(IV)在0~9 mol/L H2SO4溶液中,10~50 ℃下的饱和溶解度,并构建了饱和溶解度与温度和硫酸浓度的关系模型。研究表明,V(IV)的饱和溶解度随温度的升高显著增大,随硫酸浓度的增大显著降低。文献报道的测定值较低,例如,10 ℃下,起始酸度为5 mol/L的H2SO4溶液中V(IV)的饱和溶解度仅为0.69 mol/L,远低于商业钒电解液浓度1.5~1.8 mol/L。将VOSO4粉体悬浮在5 mol/L H2SO4溶液中,通过电解制备过饱和的V(III),然后再电解还原制备过饱和的V(IV),10 ℃下,过饱和溶液中V(IV)浓度为1.67 mol/L。由此推断,在实际电解液中,V(IV)是在过饱和状态下工作的。过饱和浓度仍随温度降低和硫酸浓度升高而显著降低,这个规律与共存的V(V)离子相反,因此钒电解液配制需要严格控制合适的硫酸浓度和温度。电解液负极电对V3+/V2+以简单离子形式存在,两个价态的离子都具有强还原性,尤其V2+暴露在空气中即被氧化,因此负极电解液需要密封或惰性气体保护。同样,UNSW研究人员早期测定V2+和V3+在硫酸溶液中的溶解度较低,例如5 mol/L H2SO4溶液中10 ℃和30 ℃下V2+的溶解度分别为1.06 mol/L和1.84 mol/L;而V3+的溶解度仅有0.06 mol/L和0.2 mol/L,溶解度远低于商业电解液使用的范围。在相同温度和酸度下采用V(IV)电解还原得到的V2+和V3+过饱和浓度(m
ol/L)分别为V2+:1.56(10 ℃)和1.74(30 ℃);V3+:1.17(10 ℃)和1.39(30 ℃)。V2+和V3+太平洋汽车模型在硫酸中的溶解度随温度和硫酸浓度的变化趋势与V(IV)相同,在相同酸度和温度下,V3+稳定存在的浓度明显低于V(IV)。因此,低温充电状态下V3+结晶析出也是钒电池电解液应用需关注的问题。在室温25 ℃下硫酸浓度为1~4 mol/L的溶液中通过V3.5+电解制备了1.5 mol/L各种价态的钒溶液,静态观察30天,发现V3+在4 mol/L H2SO4溶液中不稳定,有沉淀析出,并指出电解液优化的硫酸浓度为3~3.5 mol/L。赵建新等通过VOSO4电解还原制备V3+,研究不同H2SO4浓度和温度下V3+的溶解度,结果表明随H2SO4浓度的增高,V3+溶解度快速下降,15 ℃下3 mol/L H2SO4溶液中V3+溶解度约2 mol/L,而5 mol/L H2SO4中溶解度仅有1 mol/L。不同于其他报道的结果,V3+溶解度随温度升高反而降低,3 mol/L H2SO4溶液中15 ℃下,V3+溶解度接近1.8 mol/L,而40 ℃溶解度只有约1 mol/L。但比较确定的是正极电解液在低温下更稳定,而负极电解液在高温下更稳定。电池在一定充放电状态(state of charge,SOC)下运行,实际电堆中V在两极电解液中更多以混合价态存在,单一价态的浓度低于钒总浓度。因此,钒电解液中钒浓度能够具有比单一价态饱和溶解度更高的浓度值。但当电池处于全充或全放电状态(100% SOC),V的价态比较单一,高浓度V的电解液容易形成沉淀,造成充放电不可逆。另外,V浓度和酸浓度增大会提高电解液的黏度,从而影响离子的电导率等一些电化学性能,例如,通过系统比较VRFB的运行稳定性、电化学性能等,认为钒电解液的V浓度为1.0~1.2 mol/L时最具有成本优势,尤其是对于大型储能电池。
发布评论