(归纳)七年级下数学一元一次不等式(组)的典型应用题
一.列不等式解应用题
类型一
例1.小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?
解:设 ,依题意得:
练习一:
1.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?
2.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?
北京现代瑞纳白类型二
例2.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.
(1).若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.
(2).根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?
练习二:
1.国庆期间两名家长计划带几个孩子去旅游,他们联系了两家旅行社,报价均为每人500元,
经协商甲旅行社的优惠条件是:两名家长全额收费,孩子均按7折收费;乙旅行社的条件是:家长和孩子均按8折收费。假设两名家长带领x名孩子去旅游,他们应选择哪家旅行社?
类型三
例3.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?
练习三:
1、某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价 元,售价 元。
二.列不等式(组)解应用题
例1、今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
盐城二手车>广州本田车型解:(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,依题意,得
4x + 2(8-x)≥20,且x + 2(8-x)≥12,解此不等式组,得 x≥2,且 x≤4,
即 2≤x≤4.
因为x是正整数, 所以x可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:
甲种货车 | 乙种货车 | |
方案一 | 2辆 | 6辆 |
方案二 | 3辆 | 5辆 |
方案三 | 4辆 | 4辆 |
(2)方案一所需运费300×2+240×6= 2 040(元);方案二所需运费 300×3+240×5 =2 100(元);方案三所需运费300×4 +240×4 =2 160(元).所以王灿应选择方案一运费最少,最少运费是2 040元.
练习一:
1、某工厂现有甲种原料360 kg,乙种原料290 kg,计划用这些原料生产A、B两种产品共50 kg.已知生产一件A种产品需甲种原料9 kg、乙种原料3 kg;生产一件B种产品需甲种原料4 kg、乙种原料10 kg,
(1)设生产x件A种产品,写出x应满足的不等式组?
(2)有哪几种符合题意的生产方案?请你帮助设计.
例2、宁启铁路泰州火车站有某公司待运的甲种货物1580吨,乙种货物1050吨,现计划用50节A、B两种型号的车厢将这批货物运至北京。已知A、B两种型号的车厢每节配载甲、乙两种货物的装载能力和每节车厢的运费见下表:
A型(单位:节) | B型(单位:节) | |
甲(单位:吨) | 35 | 25 |
乙(单位:吨) | 15 | 35 |
运费(单位:万元/节) | 0.5 | 0.8 |
(1)按此要求安排A、B两种货厢的节数,共有几种方案?(6分)
(2)哪种方案的运费最少,最少运费是多少?(4分)
练习二:
2、某中学为落实市教育局提出的“全员育人,创办特学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.
(1)符合题意的组建方案有几种?请你帮学校设计出来;
(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?
例3、某商店需要购进甲、乙两种商品共160件,其进价的售价如下表(:获利= 售价 - 进价)
甲 | 乙 | |
进价(元/ 件) | 15 | 35 |
售价(元/ 件) | 20 | 45 |
(1)若商店计划销售完这批商品后,能获得1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案。
解:、(1)设 甲种商品进x 件,乙 y件,则
即购进甲100件,乙60件
(2)设该商店购进甲x件,乙(160-x)件,则15x + 35(160-x)< 4300
(20-15)x+(45-35)(160-x)>1260
解得 65<x <68 ,则x的整数值是66 和 67 ,所以共有两种购货方案,
方案一 甲:66件乙:94件 方案二甲:67件 乙:93件
获利最大的购货方案是方案一,即购进甲66件,乙94件时获利最大
练习三:
种植户 | 种植A类蔬菜面积 (单位:亩) | 种植B类蔬菜面积 (单位:亩) | 总收入 (单位:元) |
甲 | 3 | 1 | 12500 |
乙 | 2 | 3 | 16500 |
说明:不同种植户种植的同类蔬菜每亩平均收入相等.
⑴ 求A、B两类蔬菜每亩平均收入各是多少元?
⑵ 某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.
例4、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。现有甲、乙两种型号的设备,其中每台的价格、工作量如下表。经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元.
甲型 | 乙型 | 油价92号汽油 调价时间|
价格(万元/台) | ||
产量(吨/月) | 240 | 180 |
(1)求a, b的值;(2)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;
(3)在(2)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
解:(1)由题意可知: 东风悦达起亚远舰答:a, b的值分别是12,10.
(2)设购买A型设备x台,B型设备(10-x)台,则:
12x+10(10-x)≤110-∴x≤5,∵x取非负整数∴x=0,1,2,3,4,5, 有6种购买方案
(3)由题意:240x+180(10-x)≥2040-∴x≥4∴x为4或5.当x=4时,购买资金为:12×4+10×6=108(万元)
当x=5时,购买资金为:12×5+10×5=110(万元)
最省钱的购买方案为,应选购A型设备4台,B型设备6台-
练习四:
4、为实现区域教育均衡发展,我市计划对某区A、B两类薄弱学校全部进行改造.根据预
算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
发布评论