深度解析特斯拉自动驾驶芯片及视觉传感器
来源:招商汽车研究
1. 核心观点
特斯拉的在智能驾驶方面的种种优势,预测特斯拉本土化后的销量仍将持续向好。特斯拉对于整个电动车市场的鲶鱼效应是巨大的。
2019年是电动车行业的转折点,补贴大幅退坡带动行业进入微补贴时代,国内新能源行业更大范围的洗牌即将到来。国际巨头特斯拉上海工厂正式量产,有望在2020年后,在国内外众多电动车品牌的竞争中坐稳头筹,逐步形成垄断地位,形成规模效益,获得稳定的利润,对国内新能源市场产生一定压力。
回顾特斯拉发展历史,其通过先普及硬件,再通过OTA空中升级解锁软件的方式逐步实现自动驾驶具体功能。目前特斯拉已经率先实现L3级别量产,硬件足以支撑L5级别全自动驾驶,软件升级频率高,功能从智能汽车向智能移动空间转变。特斯拉对软件、硬件两方面都拥有绝对的把控权,实现功能完善和开拓新的功能。软件硬件两条腿交替向前走,推动整体功能
平稳提升。
特斯拉自动驾驶在硬件、软件各层面技术优势突出。自主研发芯片FSD性能提高21倍;传感器采用视觉主导方案,配合深度学习,多传感器冗余,实现360°全天候监测;自动驾驶功能在量产车型中最健全、实际应用效果最佳,是为自动驾驶领域当之无愧的先行者。我们认为特斯拉将持续保持智能驾驶领域先行者的优势,加深护城河。
打破产量瓶颈后,特斯拉的技术优势转化销量优势。今年特斯拉实现本土化后,降本空间提高,原材料、人工、运费、关税都有折价空间,毛利率有望进一步提高。特别是本土零部件产业链将会充分受益,产业链迎来利好。伴随着国内技术迭代与推进,自主新能源汽车在产品竞争力上有望明显提升。
2. 前言
2019年是电动车行业的转折点,新能源汽车国际领军企业特斯拉加大本土化趋势,进入从追求市场份额到追求垄断地位及稳定利润的过渡时期,对国产新能源汽车形成竞争压力。特斯拉2019 年三季报显示:汽车业务毛利 12.22 亿美元,环比增长 20%。
特斯拉电动车
10月25日,特斯拉公司宣布由上海超级工厂制造的标配基础版辅助驾驶功能的Model3标准续航升级版车型正式开放预订,售价35.58万元。国内量产后,Model 3的销量还有进一步增长的空间,凭借中国广阔的电动车市场,特斯拉的全球市场份额也有望短期内快速增长。特斯拉通过产能有效扩容,有望在2020年后,在国内外众多电动车品牌的竞争中坐稳头筹,逐步形成垄断地位,形成规模效益,坐拥稳定的利润。
3. 特斯拉智能驾驶的发展历程
特斯拉的核心优势之一是智能驾驶技术成熟。
智能辅助驾驶系统涵盖三个方面,分别为1)感知层,通过传感器(包括车载摄像头/超声波雷达/毫米波雷达/激光雷达等)感知车身周围环境;2)决策层,通过感知层收集的信息作出相应的决策(涉及芯片/算法);3)执行层,通过接收传感器的实时信息、以及芯片/算法得出的决策信号从而采取包括刹车/警示等在内的行车行动。其中硬件设备包括传感器、芯片、高精地图,软件为ADAS自动驾驶辅助系统。
特斯拉的自动辅助驾驶系统通过先普及硬件,配备L2以上级别的传感器、芯片算法及零配
件,再通过OTA利用移动通信空中接口对 SIM 卡数据及应用进行远程管理升级解锁软件,实现自动变道、自适应巡航等具体功能。特斯拉对软件、硬件两方面都拥有绝对的把控权,让其能够推动技术不断迭代,实现功能完善和开拓新的功能。软件硬件两条腿交替向前走,推动整体功能平稳提升。
特斯拉的硬件设备一共有三次升级,HW1.0到HW2.0主要通过增加传感器数量和深度学习功能使感知力大幅提升。HW2.0到HW3.0主要针对芯片进行了两次升级,基本实现了L5完全自动驾驶级别所需的计算能力。
1、HW 1.0到HW 2.0:传感器冗余设计,增加深度学习功能
特斯拉在第一代硬件HW1.0时采用Mobileye视觉识别芯片,信息收集阶段主要依靠Mobileye的图像识别技术,数据来自于车顶的Mobileye摄像头,车首的雷达和周边雷达只是提供辅助信息。Mobile EyeQ3可识别障碍物位置、可用空间、车辆形状位置前后、行人、路牌、红黄绿灯, 但由于特斯拉使用自己的ADAS软件,EyeQ3的部分功能如红绿灯识别,无中间黄线的双行道识别等功能未得到完全释放。
HW2.0增加了侧前侧后方摄像头,前置摄像头由单目进化为三目摄像头,周边车辆的感知能力提升了6倍,前方障碍物识别也得到了极大更新。辅助数据除雷达、超声波传感器之外还包括深度学习构建的高精度地图和白名单。
2、HW 2.0到HW 3.0:芯片算力飞跃,自主研发掌控硬件
HW2.0使用NVIDIA的Drive PX 2芯片,主板的整体集成度并不高,有大片留白。所有芯片加起来理论算力仅有NVIDIA的Drive PX 2的一半。HW2.5芯片整体集成度空前提高,在之前主板构造的基础上增加了4块CPU,集成度上的飞跃带来算力的跃升,基本达到了Drive PX 2的理论算力水平。
在HW3.0时特斯拉使用自主研发芯片FSD,在计算层拥有了完全掌控力。FSD采用双芯片设计,算力达到了144TOPS,对比HW2.5性能提高了21倍,而功耗仅提高了25%。同时在安全性则在系统层面也有很多考虑,比如大量的冗余设计。
同一块板卡上配备两颗芯片,同时都对同样的数据进行分析,然后对比分析结果(或者相互验证),再得出最终结论。目前,HW3.0已经完全能够应对L5级别自动驾驶所需的感知层数据量和计算能力,成为特斯拉智能驾驶技术的核心竞争力。
3、OTA软件升级之路:从智能汽车到智能移动空间
特斯拉的软件迭代通过OTA空中升级实现,主要经历三个阶段。
第一阶段:创新、探索:4.0版本—6.0版本。本阶段内特斯拉受产能和技术限制,尚未加入真正意义上的自动辅助驾驶功能,升级领域聚焦于智能网联、语音交互、实时导航服务等功能,创造了人车交互的雏形。特斯拉早期的版本平均更新速度是34天发布一次,更细微的维护版本更新速度则为平均每60天更新一次,保持高频率迭代升级。平均每60天更新一次,保持高频率迭代升级。
第二阶段:重大突破:6.1版本—7.1版本。特斯拉首次加入了自动车道保持、自动变道和自动泊车三大辅助驾驶功能。只要向内侧拨动两次定速巡航杆,就能开启辅助驾驶。打开转向灯,汽车会在安全的情况下自动变道,全程无需司机驾驶。特斯拉正式落地实现自动驾驶功能。
第三阶段:完善、开拓:8.0版本—10.0版本。特斯拉持续优化现有的自动辅助驾驶功能。8.0版本当中,对 Autopilot 就有200项的改进,除了对体验流畅度和响应速度要求更高以外,
在安全性方面也得到增强。另外,特斯拉开始拓展在舒适度和娱乐功能上的拓展,8.0版本加入爱宠模式:当车主暂时离开,车内会自动给猫狗等宠物调节到舒适的温度,保持车内透气恒温。10.0版本加入第三方应用,可在线看 YouTube、Netflix 流媒体,加入在线卡拉 OK 等新功能。特斯拉从“智能驾驶汽车”逐渐向“移动智能空间”转变。
4. 特斯拉在智能驾驶领域具有核心优势
智能辅助驾驶技术的核心在于计算层的芯片和算法,特斯拉在这两个领域有一定的先发优势、且已逐步切换至自主研发芯片、算法的阶段。在感知层打破了视觉传感器流派的瓶颈,执行层则做到了目前最为完善的自动驾驶功能。鉴于其在自动驾驶领域技术研发积累、硬件软件基本自主可控以及成本优势,预计智能辅助驾驶技术也将成为特斯拉的长期核心竞争力。
1、计算层优势——双芯片算力领航,ECU设计重新定义汽车
1.1 自主研发芯片:算力安全双保险
特斯拉目前使用完全自主研发的FSD全自动驾驶芯片,算力单芯片72TOPS,板卡144TOP
S。
FSD主板设计的最大特点是双芯片设计形成冗余,减少了功能区故障隐患,同时提高了图像处理的安全与精准性。根据马斯克的说法,FSD芯片主板做了完整的冗余,也就是说HW3.0 的每一个功能区都可以损坏,而整套硬件依然可以保持正常工作。
同时,主板内部设置了两个处理器,同一块板卡上的两颗芯片的供电和数据通道都是独立且互为备份的。两颗芯片对同样的数据进行分析,相互验证、比对分析,再得出最终结论,极大地提高了图像处理的安全和准确性。
从单个处理器来看,FSD处理器由一块负责通用数据处理的中央处理器CPU、一块负责图形处理的GPU、两块负责深度学习和预测的神经处理单元NPU和一块内置图像处理器ISP组成。
FSD的核心优势在于强大的图像处理和高速传输数据能力。GPU单元为图形处理单元,工作是协助核心处理器完成图形和动画的渲染,让用户能在屏幕上获取有效信息。图像处理器 ISP 的作用主要是将摄像头产生的原始 RGB 三原数据转化成复杂的图像信息。GPU和ISP构成了智能驾驶AI芯片的主角。
FSD内置了主频为 1GHZ 的 GPU,拥有 600TOPS 的超强运算力,同时图像处理器ISP最高可以25 亿像素/秒的高速处理 10 亿像素的数据量数据。大概是往21块1080P的全高清屏幕塞60帧画面的程度,这已经追上现在世界上最快的消费级图像传输标准 DisplayPort 1.4 了,而车载芯片“传统上”要落后消费级起码一个时代的。
FSD的数据传输速度也远超过现在特斯拉配备的8摄像头传感器所产生的数据,为之后的特斯拉向L5级别自动驾驶升级预留了足够的数据传输空间。
FSD的优势之二在于神经处理单元NPU储存芯片容量巨大、带宽速度极快。NPU负责根据深度学习模型对ISP产生的图像数据作出处理——但在此之前,这些数据将会存储在SRAM内。
SRAM可以简单地将它理解为比运行内存速度快很多,同时成本也高很多的存储芯片,一般被应用在处理芯片的1-3级缓存上。FSD现在拥有32MB 的缓存,对比来看,零售价16999元的英特尔酷睿i9-9980XE,SRAM缓存总量也仅为33.75MB,2010年英特尔CPU的最大SRAM仅为16MB,2014年也只是增长到了24MB。
巨大的 SRAM 容量总结为 FSD 芯片对比市场上同类芯片的最大的优势。另外,特斯拉芯片总工程师Pete Bannon 表示,处理全自动驾驶的缓存带宽至少要达到1TB/秒,而 FSD 芯片的 SRAM 实际上能提供 2TB/秒的带宽。
FSD的优势之三在于CPU架构的优化。特斯拉采用的是三个四核CPU的并联架构,运行频率为 2.2GHZ。多个核心叠加的方式保证了多线程总性能不比如今顶级的 4 核心移动端CPU弱,甚至更胜一筹。与上一代HW2.5相比,HW 3.0的CPU性能提升到了上一代的2.5 倍。