总结一些经典数量关系公式用于秒杀的公式
1.两次相遇公式:单岸型S=(3S1+S2)/2两岸型S=3S1-S2
例题:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙 岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇。到达预定地点后, 每艘船都要停留 10 分钟,以便让乘客上船下船,然后返航。这两艘船在距离乙岸 400 米处又重新相遇。问:该河的宽度是多少?
A. 1120 米B. 1280 米C. 1520 米D. 1760 米
典型两次相遇问题,这题属于两岸型(距离较近的甲岸 720 米处相遇、距离乙岸 400 米处又重新相遇)代入公式3*720-400=1760选D
如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸
2.漂流瓶公式: T=(2t逆*t顺)/ (t逆-t顺)
例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天?
  A、3天 B、21天 C、24天 D、木筏无法自己漂到B城
解:公式代入直接求得24
3.沿途数车问题公式:发车时间间隔T=(2t1*t2)/ (t1+t2 )车速/人速=(t1+t2)/ (t2-t1)
例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍?
A. 3 C. 5
解:车速/人速=(10+6)/(10-6)=4 选B
4.往返运动问题公式:V均=(2v1*v2)/(v1+v2)
例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时()
解:代入公式得2*30*20/(30+20)=24选A
5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)
能看到级数=(人速-电梯速度)*逆行运动所需时间 (逆)
6.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}
例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖
每千克费用分别为 元,6 元, 元,如果把这三种糖混在一起成为什锦
秒杀汽车糖,那么这种什锦糖每千克成本多少元?
A. 元 B.5 元 C. 元 D. 元
某商店分别花同样多的钱,购进甲、乙、丙三种不同的糖果.已知甲、乙、丙三种糖果每千克的价格分别是元、16元、18元.如果把这三种糖果混合成什锦糖,按20%的利润来定价,那么这种什锦糖每千克定价是多少元
3/(1/+1/16+1/18)*(1+20%)=
7.十字交叉法:A/B=(r-b)/(a-r)
例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:?
析:男生平均分X,女生?
75-X1?
75=?
X  ?
得X=70 女生为84
人传接球M次公式:次数=(N-1)的M次方/N 最接近的整数为末次传他人次数,第
二接近的整数为末次传给自己的次数
例题: 四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。
A. 60种 B. 65种 C. 70种 D. 75种?
公式解题: (4-1)的5次方 / 4= 最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数
9.一根绳连续对折N次,从中剪M刀,则被剪成(2的N次方*M+1)段
10.方阵问题:方阵人数=(最外层人数/4+1)的2次方 N排N列最外层有4N-4人
例:某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生?
析:最外层每边的人数是96/4+1=25,则共有学生25*25=625
11.过河问题:M个人过河,船能载N个人。需要A个人划船,共需过河(M-A)/ (N-A)次
例题 (广东05)有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完( )
B. 8 
解:(37-1)/(5-1)=9
12.星期日期问题:闰年(被4整除)的2月有29日,平年(不能被4整除)的2月有28
日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算
例:2002年 9月1号是星期日2008年9月1号是星期几?
因为从2002到2008一共有6年,其中有4个平年,2个闰年,求星期,则:
4X1+2X2=8,此即在星期日的基础上加8,即加1,第二天。
例:2004年2月28日是星期六,那么2008年2月28日是星期几?
4+1=5,即是过5天,为星期四。(08年2 月29日没到)
13.复利计算公式:本息=本金*{(1+利率)的N次方},N为相差年数
例题:某人将10万远存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为20%,则税后他能实际提取出的本金合计约为多少万元 ()
A.10.32
两年利息为(1+2%)的平方*10-10= 税后的利息为*(1-20%)约等于,则提取出的本金合计约为万元
14.牛吃草问题:草场原有草量=(牛数-每天长草量)*天数
例题:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?
A、16 B、20 C、24 D、28
解:(10-X)*8=(8-X)*12 求得X=4(10-4)*8=(6-4)*Y 求得答案Y=24 公式熟练以后可以不设方程直接求出来
15.植树问题:线型棵数=总长/间隔+1环型棵数=总长/间隔楼间棵数=总长/间隔-1
例题:一块三角地带,在每个边上植树,三个边分别长156M 186M 234M,树与树之间距离为6M,三个角上必须栽一棵树,共需多少树?
A 93B 95C 96D 99
16:比赛场次问题: 淘汰赛仅需决冠亚军比赛场次=N-1淘汰赛需决前四名场次=N
单循环赛场次为组合N人中取2双循环赛场次为排列N人中排2
比赛赛制
比赛场次
循环赛
单循环赛
参赛选手数×(参赛选手数-1 )/2
双循环赛
参赛选手数×(参赛选手数-1 )
淘汰赛
只决出冠(亚)军
参赛选手数-1
要求决出前三(四)名
参赛选手数
捆羊的问题
A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值,分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有几个?
A、 0B、1 C、2 D、3
最轻羊={(羊数-1)次重量+(羊数-2)次重量-最重的重量}/2
最重羊={(羊数-1)次重量-(羊数-2)次重量+最重的重量}/2
(31+28-45)/2=7
(31-28+45)/2=24
所以 5个数 以此为7,10,18,21,24
18 24可以被6整除